【题目】已知椭圆的焦距为2,且过点.
(1)求椭圆的标准方程;
(2)若为坐标原点,为直线上的一动点,过点作直线与椭圆相切于点,若的面积为,求直线的方程.
科目:高中数学 来源: 题型:
【题目】设直线与直线分别与椭圆交于点,且四边形的面积为.
(1)求椭圆的方程;
(2)设过点的动直线与椭圆相交于,两点,是否存在经过原点,且以为直径的圆?若有,请求出圆的方程,若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南北朝时期的数学家祖暅提出了计算几何体体积的祖暅原理:“幂势既同,则积不容异“.意思是两个同高的几何体,如果在等高处的截面积都相等,那么这两个几何体的体积相等.现有某几何体和一个圆锥满足祖暅原理的条件,若该圆锥的侧面展开图是半径为3的圆的三分之一,则该几何体的体积为( )
A.πB.πC.4D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极点、以轴正半轴为极轴的极坐标系中,曲线的极坐标方程为,若直线与曲线交于、两点.
(1)求线段的中点的直角坐标;
(2)设点是曲线上任意一点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:1(a>b>0)的离心率为,点M(a,0),N(0,b),O(0,0),且△OMN的面积为1.
(1)求椭圆C的标准方程;
(2)设A,B是x轴上不同的两点,点A(异于坐标原点)在椭圆C内,点B在椭圆C外.若过点B作斜率不为0的直线与C相交于P,Q两点,且满足∠PAB+∠QAB=180°.证明:点A,B的横坐标之积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b,c分别为内角A,B,C的对边,若同时满足以下四个条件中的三个:①,②,③,④.
(1)条件①②能否同时满足,请说明理由;
(2)以上四个条件,请在满足三角形有解的所有组合中任选一组,并求出对应的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是2020项的实数数列,中的每一项都不为零,中任意连续11项的乘积是定值.
①存在满足条件的数列,使得其中恰有365个1;
②不存在满足条件的数列,使得其中恰有550个1.
命题的真假情况为( )
A.①和②都是真命题B.①是真命题,②是假命题
C.②是真命题,①是假命题D.①和②都是假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的离心率为,左焦点到直线的距离为10,圆.
(1)求椭圆的方程;
(2)若是椭圆上任意一点,为圆的任一直径,求的取值范围;
(3)是否存在以椭圆上点为圆心的圆,使得过圆上任意一点作圆的切线,切点为,都满足?若存在,求出圆的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“勾股定理”在西方被称为“毕达哥拉斯定理”,国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形若直角三角形中较小的锐角,现在向该大止方形区域内随机地投掷一枚飞镖,则飞镖落在阴影部分的概率是
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com