精英家教网 > 高中数学 > 题目详情
已知抛物线C:y2=4x,直线l:y=kx+b与C交于A,B两点,O为坐标原点.
(1)当k=1,且直线l过抛物线C的焦点时,求|AB|的值;
(2)当直线OA,OB的倾斜角之和为45°时,求k,b之间满足的关系式,并证明直线l过定点.
分析:(1)根据抛物线方程求得焦点坐标,根据点斜式求得直线l的方程与抛物线方程联立,设A(x1,y1),B(x2,y2),根据韦达定理求得x1+x2和x1x2的值,进而根据两点间的距离公式求得|AB|的值;
(2)把直线方程与抛物线方程联立消去x,根据韦达定理表示出y1+y2和y1y2,设直线OA,OB的倾斜角分别为α,β,斜率分别为k1,k2,依题意可知α+β=45°,进而根据正切的两脚和公式可知
k1+k2
1-k1k2
=1
其中k1=
y1
x1
=
4
y1
k2=
4
y2
代入ky2-4y+4b=0求得b和k的关系式,此时使ky2-4y+4b=0有解的k,b有无数组把直线方程整理得k(x+4)=y-4推断出直线l过定点(-4,4).
解答:解:(1)抛物线C:y2=4x的焦点为(1,0)
由已知l:y=x-1,设A(x1,y1),B(x2,y2),
联立
y2=4x
y=x-1
,消y得x2-6x+1=0,
所以x1+x2=6,x1x2=1
|AB|=
(x2-x1)2+(y2-y1)2
=
2
(x2-x1)2
=
2
(x2+x1)2-4x1x2
=8


(2)联立
y2=4x
y=kx+b
,消x得ky2-4y+4b=0(*)(依题意k≠0)
y1+y2=
4
k
y1y2=
4b
k

设直线OA,OB的倾斜角分别为α,β,斜率分别为k1,k2
则α+β=45°,tan(α+β)=tan45°,
k1+k2
1-k1k2
=1

其中k1=
y1
x1
=
4
y1
k2=
4
y2

代入上式整理得y1y2-16=4(y1+y2
所以
4b
k
-16=
16
k
,即b=4k+4,
此时,使(*)式有解的k,b有无数组
直线l的方程为y=kx+4k+4,整理得k(x+4)=y-4
消去
x+4=0
y-4=0
,即
x=-4
y=4
时k(x+4)=y-4恒成立,
所以直线l过定点(-4,4)
点评:本题主要考查了直线与圆锥曲线的综合问题.考查了学生综合运用基础知识的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线C:y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点. A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M(O为坐标原点).
(Ⅰ)求抛物线C的方程;
(Ⅱ)过M作MN⊥FA,垂足为N,求点N的坐标;
(Ⅲ)以M为圆心,4为半径作圆M,点P(m,0)是x轴上的一个动点,试讨论直线AP与圆M的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0),F为抛物线C的焦点,A为抛物线C上的动点,过A作抛物线准线l的垂线,垂足为Q.
(1)若点P(0,4)与点F的连线恰好过点A,且∠PQF=90°,求抛物线方程;
(2)设点M(m,0)在x轴上,若要使∠MAF总为锐角,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2Px(p>0)上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线y=kx+b(k≠0)与抛物线C交于两点A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求证:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x,点M(m,0)在x轴的正半轴上,过M的直线l与C相交于A、B两点,O为坐标原点.
(I)若m=1,且直线l的斜率为1,求以AB为直径的圆的方程;
(II)问是否存在定点M,不论直线l绕点M如何转动,使得
1
|AM|2
+
1
|BM|2
恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=8x与点M(-2,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若
MA
MB
=0,则k=(  )

查看答案和解析>>

同步练习册答案