精英家教网 > 高中数学 > 题目详情

(本小题13分)己知函数
(1)试探究函数的零点个数;
(2)若的图象与轴交于两点,中点为,设函数的导函数为, 求证:

(1)时,有2个零点;时,有1个零点;没有零点;(2)证明详见解析.

解析试题分析:(1)先求导,求出极值点,然后分类求出函数的零点个数.(2)首先用函数的零根表示出a,,即=,然后代入中,整理得,设,则,通过导数求的值域大于0即可得证.
试题解析:(1),则x=是极大值点,函数 极大值,(0, )是单调增区间,( ,+)是单调减区间;(1)当,即时,有2个零点;(2)当,即时,有1个零点;(3)当,即没有零点;
(2)由
  
=,令,设
,又
,又
考点:1.函数的导数和导数的性质;2.不等式的证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若上是增函数,求实数a的取值范围;
(Ⅱ)证明:当a≥1时,证明不等式≤x+1对x∈R恒成立;
(Ⅲ)对于在(0,1)中的任一个常数a,试探究是否存在x0>0,使得>x0+1成立?如果存在,请求出符合条件的一个x0;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若曲线在x=l和x=3处的切线互相平行,求a的值及函数的单调区间;
(2)设,若对任意,均存在,使得,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)证明:
(2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,().
(1)求函数的单调区间;
(2)求证:当时,对于任意,总有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)设(其中的导函数),求的最大值;
(2)求证: 当时,有
(3)设,当时,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中a>0.
(Ⅰ)求函数的单调区间;
(Ⅱ)若直线是曲线的切线,求实数a的值;
(Ⅲ)设,求在区间上的最大值(其中e为自然对的底数)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(I)函数在区间上是增函数还是减函数?证明你的结论;
(II)当时,恒成立,求整数的最大值;
(Ⅲ)试证明: 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线排水管,在路南侧沿直线排水管(假设水管与公路的南,北侧在一条直线上且水管的大小看作为一条直线),现要在矩形区域ABCD内沿直线EF将接通.已知AB = 60m,BC = 60m,公路两侧排管费用为每米1万元,穿过公路的EF部分的排管费用为每米2万元,设EF与AB所成角为.矩形区域内的排管费用为W.

(1)求W关于的函数关系式;
(2)求W的最小值及相应的角

查看答案和解析>>

同步练习册答案