精英家教网 > 高中数学 > 题目详情
(2011•钟祥市模拟)设{an}是由正数组成的等差数列,Sn是其前n项和
(1)若Sn=20,S2n=40,求S3n的值;
(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式SpSq<Sm2成立;
(3)是否存在常数k和等差数列{an},使kan2-1=S2n-Sn+1恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由.
分析:(1)根据Sn,S2n-Sn,S3n-S2n也是等差数列,得到Sn+(S3n-S2n)=2(S2n-Sn),从而可求S3n的值;
(2)SpSq=
1
4
pq(a1+ap)(a1+aq)=
1
4
pq[a12+a1(ap+aq)+apaq],进而利用基本不等式可证;
(3)设an=pn+q(p,q为常数),则Kan2-1=kp2n2+2kpqn+kq2-1,
Sn=
1
2
pn(n+1)+qnS2n-Sn+1=
3
2
pn2+(q-
p
2
)n-(p+q)

kp2n2+2kpqn+kp2-1=
3
2
pn2+(q-
p
2
n)-(p+q)
,故有
kp2=
3
2
p…①
2kpq=q-
p
2
…②
kq2-1=-(p+q)…③
,由此能够求出常数 k=
81
64
及等差数列 an=
32
27
n-
8
27
满足题意.
解答:解:(1)在等差数列{an}中,Sn,S2n-Sn,S3n-S2n,…成等差数列,
∴Sn+(S3n-S2n)=2(S2n-Sn
∴S3n=3 S2n-3 Sn=60…(4分)
(2)SpSq=
1
4
pq(a1+ap)(a1+aq
=
1
4
pq[a12+a1(ap+aq)+apaq]
=
1
4
pq(a12+2a1am+apaq)<
1
4
p+q
2
2[a12+2a1am+(
ap+aq
2
2]
=
1
4
m2(a12+2a1am+am2)=[
1
2
m(a1+am)]2
=Sm2…(8分)
(3)假设存在常数k和等差数列{an},使kan2-1=S2n-Sn+1恒成立.
设an=pn+q(p,q为常数),则Kan2-1=kp2n2+2kpqn+kq2-1,
Sn=
1
2
pn(n+1)+qnS2n-Sn+1=
3
2
pn2+(q-
p
2
)n-(p+q)

kp2n2+2kpqn+kp2-1=
3
2
pn2+(q-
p
2
n)-(p+q)

故有
kp2=
3
2
p…①
2kpq=q-
p
2
…②
kq2-1=-(p+q)…③


由①得p=0或 kp=
3
2
.当p=0时,由②得q=0,而p=q=0不适合③,故p≠0把 kp=
3
2
代入②,得 q=-
p
4
q=-
p
4
代入③,又 kp=
3
2
p=
32
27
,从而 q=-
8
27
,k=
81
64
.故存在常数 k=
81
64
及等差数列 an=
32
27
n-
8
27
满足题意.
点评:本题以等差数列为载体,考查数列的性质和应用,解题时先假设存在常数k和等差数列{an},使kan2-1=S2n-Sn+1恒成立.然后再根据题设条件进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•钟祥市模拟)定义在R上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,f(
x
3
)=
1
2
f(x)
,且当0≤x1<x2≤1时,有f(x1)≤f(x2),则f(
1
2010
)
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•钟祥市模拟)已知圆C:x2+y2=1,点P(x0,y0)在直线x-y-2=0上,O为坐标原点,若圆C上存在点Q,使∠OPQ=30°,则x0的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•钟祥市模拟)函数y=
log
1
3
(2-x)
的定义域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•钟祥市模拟)已知,A是抛物线y2=2x上的一动点,过A作圆(x-1)2+y2=1的两条切线分别切圆于EF两点,交抛物线于M.N两点,交y轴于B.C两点
(1)当A点坐标为(8,4)时,求直线EF的方程;
(2)当A点坐标为(2,2)时,求直线MN的方程;
(3)当A点的横坐标大于2时,求△ABC面积的最小值.

查看答案和解析>>

同步练习册答案