若的图像与直线相切,并且切点横坐标依次成公差为的等差数列.
(1)求和的值;
(2)ABC中a、b、c分别是∠A、∠B、∠C的对边.若是函数图象的一个对称中心,且a=4,求ABC面积的最大值.
(1)(2)
【解析】
试题分析:(1)依次利用余弦降幂、正弦倍角,辅助角公式化简函数f(x),得到f(x)的最简形式,根据相切且切点有无数多个的条件可得为函数f(x)的最值(m>0即为最大值),从而求的m的值,再根据最值之间的距离即为函数f(x)的周期(即周期为),从而求的a的值.
(2)从正弦函数的图像可以分析得到图像的对称中心在正弦函数图像上,故带入函数即可得到A角的值,再利用余弦定理与基本不等式求出bc的最值,从而得到三角形面积的最值.
试题解析:(1)= 3分
由题意,函数的周期为,且最大(或最小)值为,而,
所以, 6分
(2)∵(是函数图象的一个对称中心∴
又因为A为⊿ABC的内角,所以 9分
则,再由角A的余弦定理得,则(基本不等式),所以,综上当且仅当时,的面积取得最大值. 12分
考点:三角函数 三角形余弦定理 基本不等式
科目:高中数学 来源:2013-2014学年河北省唐山市高三年级第三次模拟考试文科数学试卷(解析版) 题型:解答题
如图,四边形ABCD内接于圆,BD是圆的直径,于点E,DA平分.
(1)证明:AE是圆的切线;
(2)如果,,求CD.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年河北省高三下学期调研考试理科数学试卷(解析版) 题型:解答题
如图,是⊙的直径, 是⊙的切线,与的延长线交于点,为切点.若,,的平分线与和⊙分别交于点、,求的值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年河北省高三下学期调研考试理科数学试卷(解析版) 题型:选择题
已知双曲线上一点,过双曲线中心的直线交双曲线于两点,记直线的斜率分别为,当最小时,双曲线离心率为( )
A. B. C D
查看答案和解析>>
科目:高中数学 来源:2013-2014学年河北省高三下学期调研考试理科数学试卷(解析版) 题型:选择题
直线的方向向量为且过抛物线的焦点,则直线与抛物线围成的封闭图形面积为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年河北省高三年级模拟考试文科数学试卷(解析版) 题型:解答题
已知函数,的最大值为2.
(1)求函数在上的值域;
(2)已知外接圆半径,,角所对的边分别是,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com