精英家教网 > 高中数学 > 题目详情

【题目】某商品最近30天的价格f(t)(元)与时间t满足关系式:f(t)= ,且知销售量g(t)与时间t满足关系式 g(t)=﹣t+30,(0≤t≤30,t∈N+),求该商品的日销售额的最大值.

【答案】解:设W(t)表示商品的日销售额(单位:元)与时间t的函数关系,则有:W(t)=f(t)g(t)
= =
=
当0≤t<15,t∈N+时,易得t=3时,W(t)取最大,且为W(3)=243;
当15≤t≤30,t∈N+时,[15,30]为减函数,则t=15时,W(t)取最大,且为W(15)=195.
所以当t=3时,该商品的日销售额最大,且为243
【解析】设W(t)表示商品的日销售额(单位:元)与时间t的函数关系,则有:W(t)=f(t)g(t),对每段化简和配方,根据二次函数的性质,分别求解每段函数的最大值,由此能求出商品的日销售额W(t)的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列,其中, ,数列满足,数列满足

(1)求数列的通项公式;

(2)是否存在自然数,使得对于任意恒成立?若存在,求出的最小值;

(3)若数列满足求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a4=5,a2+a8=14,数列{bn}满足b1=1,bn+1=2 bn
(1)求数列{an}和{bn}的通项公式;
(2)求数列{ }的前n项和;
(3)若cn=an ,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线过点P(﹣3,1),且与x轴,y轴分别交于A,B两点.
(Ⅰ)若点P恰为线段AB的中点,求直线l的方程;
(Ⅱ)若 = ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C: 的长轴是短轴的两倍,点在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为,且恰好构成等比数列,记△的面积为S.

(1)求椭圆C的方程.

2)试判断是否为定值?若是,求出这个值;若不是,请说明理由?

(3)求S的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数.
(1)求a,b的值;
(2)判断函数f(x)的单调性,并用定义证明;
(3)若对于任意 都有f(kx2)+f(2x﹣1)>0成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(Ⅰ)求椭圆的方程.

(Ⅱ)若 是椭圆上两个不同的动点,且使的角平分线垂直于轴,试判断直线的斜率是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos(x+ )[sin(x+ )﹣ cos(x+ )].
(1)求f(x)的值域和最小正周期;
(2)若对任意x∈[0, ],[f(x)+ ]﹣2m=0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

已知f(x)=x∈[1,+∞).

(1)当a时,求函数f(x)的最小值;

(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.

查看答案和解析>>

同步练习册答案