精英家教网 > 高中数学 > 题目详情
16.若loga$\frac{1}{27}$=-3,则底数a=3.

分析 由对数式与指数式的互化可得3-3=$\frac{1}{27}$,从而解得.

解答 解:∵3-3=$\frac{1}{27}$,
∴a=3,
故答案为:3.

点评 本题考查了指数式与对数式的互化应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知f(x)=$\left\{\begin{array}{l}{(3-a)x-4a,x<1}\\{lgx,x≥1}\end{array}\right.$ 是(-∞,+∞)上的增函数,那么a的取值范围是(  )
A.(1,+∞)B.(-∞,3)C.[$\frac{3}{5}$,3)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在[0,2π]上,使不等式2sinx≥1成立的x的集合[$\frac{π}{6}$,$\frac{5π}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若f(x)是以2为周期的函数,且f(2)=2,则f(-4)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知cos(θ-$\frac{2π}{5}$)=$\frac{2}{3}$,则2sin($\frac{19π}{10}$-θ)+cos(θ+$\frac{13π}{5}$)等于(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列各式中的x值:
(1)${log}_{\sqrt{2}}$x=1-${log}_{\sqrt{3}}$$\sqrt{3}$;
(2)lgx=1-1g5;
(3)log3(x+1)=2;
(4)1nx=2lna-3lnb.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若log4(x-1)=$\frac{1}{2}$,则x=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=3x-1,则f-1(x)=log3(x+1)(x>-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=(a+1)x+(4a-5)在区间[0,2]内的函数值有正有负,则实数a的取值范围是($\frac{1}{2}$,$\frac{5}{4}$).

查看答案和解析>>

同步练习册答案