精英家教网 > 高中数学 > 题目详情
已知△ABC的三个顶点均在椭圆4x2+5y2=80上,且点A在y轴的正半轴上.
(Ⅰ)若△ABC的重心是椭圆的右焦点F2,试求直线BC的方程;
(Ⅱ)若∠A=90°,试证直线BC恒过定点.
【答案】分析:(Ⅰ)设B(x1,y1),C(x2,y2)进而根据椭圆方程求得b和c,进而可求得A,F1的坐标,根据三角形的重心的性质可分别求得x1+x2和y1+y2,把B,C点代入椭圆方程后两式相减,进而求得直线BC的斜率,设出直线BC的方程,把B,C点坐标代入两式相加求得b,则直线BC方程可得.
(Ⅱ)由AB⊥AC,得=x1x2+y1y2-4(y1+y2)+16=0(1).设直线BC方程为y=kx+b代入4x2+5y2=80,利用韦达定理结合(1)式,即可得直线BC过定点.
解答:解:(Ⅰ)设B(x1,y1),C(x2,y2).
整理椭圆方程得 =1,∴短轴b=4,a=2
∴c==2,
则A(0,4 ),F1(2,0)
=2,x1+x2=6
同理y1+y2=-4

两式相减可得4(x1+x2)+5(y1+y2)×k=0,
∴k=(k为BC斜率)
令BC直线为:y=x+b,则y1+y2=(x1+x2)+2b
∴b=-
∴BC直线方程为:y=x-
即5y-6x+28=0.…(7分)
(Ⅱ)由AB⊥AC,得=x1x2+y1y2-4(y1+y2)+16=0  (1)
设直线BC方程为y=kx+b代入4x2+5y2=80,得(4+5k2)x2+10bkx+5b2-80=0

∴y1+y2=k(x1+x2)+2b=,y1y2=
代入(1)式得,
解得b=4(舍)或
故直线BC过定点(0,).
点评:本题主要考查了直线与圆锥曲线的综合问题.直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等,突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三个顶点均在球O的球面上,且AB=AC=1,∠BAC=120°,直线OA与平面ABC所成的角的正弦值为
6
3
,则球面上B、C两点间的球面距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•宁波模拟)已知△ABC的三个顶点均在椭圆4x2+5y2=80上,且点A在y轴的正半轴上.
(Ⅰ)若△ABC的重心是椭圆的右焦点F2,试求直线BC的方程;
(Ⅱ)若∠A=90°,试证直线BC恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△ABC的三个顶点均在椭圆4x2+5y2=80上,且点A在y轴的正半轴上.
(Ⅰ)若△ABC的重心是椭圆的右焦点F2,试求直线BC的方程;
(Ⅱ)若∠A=90°,试证直线BC恒过定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知△ABC的三个顶点均在球O的球面上,且AB=AC=1,∠BAC=120°,直线OA与平面ABC所成的角的正弦值为
6
3
,则球面上B、C两点间的球面距离为______.

查看答案和解析>>

科目:高中数学 来源:2011年重庆市南开中学高三最后一次模拟数学试卷(理科)(解析版) 题型:解答题

已知△ABC的三个顶点均在球O的球面上,且AB=AC=1,∠BAC=120°,直线OA与平面ABC所成的角的正弦值为,则球面上B、C两点间的球面距离为   

查看答案和解析>>

同步练习册答案