精英家教网 > 高中数学 > 题目详情

已知椭圆的中心为坐标原点,短轴长为2,一条准线方程为l

⑴ 求椭圆的标准方程;

⑵ 设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点FOM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.

解:⑴∵椭圆C的短轴长为2,椭圆C的一条准线为l

∴不妨设椭圆C的方程为.(2分)∴,( 4分)即.(5分)

∴椭圆C的方程为.(6分)

    ⑵ F(1,0),右准线为l, 设

     则直线FN的斜率为,直线ON的斜率为,(8分)

     ∵FNOM,∴直线OM的斜率为,(9分)

    ∴直线OM的方程为:,点M的坐标为.(11分)

    ∴直线MN的斜率为.(12分)

    ∵MNON,∴,    ∴

,即.(13分)∴为定值.(14分)

说明:若学生用平面几何知识(圆幂定理或相似形均可)也得分,设垂足为P,准线lx轴交于Q,则有,又,所以为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,
OA
+
OB
a
=(3,-1)共线.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设M为椭圆上任意一点,且
OM
OA
OB
(λ,μ∈R)
,证明λ22为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线x=
a2c
(a为长半轴,c为半焦距)上.
(1)求椭圆的标准方程
(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心为坐标原点,斜率为1且过椭圆右焦点F(2,0)的直线交椭圆于A,B两点,
OA
+
OB
a
=(3,-1)
共线,则该椭圆的长半轴长为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点M(2,t)(t>0)在直线x=
a2c
(a为长半轴,c为半焦距)上.
(1)求椭圆的标准方程;
(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,
OA
+
OB
a
=(3,-1)
共线,则该椭圆的离心率为(  )
A、
5
3
B、
3
2
C、
6
3
D、
2
2
3

查看答案和解析>>

同步练习册答案