精英家教网 > 高中数学 > 题目详情

【题目】下列说法正确的是(

A.点(20)关于直线yx+1的对称点为(﹣13

B.过(x1y1),(x2y2)两点的直线方程为

C.经过点(11)且在x轴和y轴上截距都相等的直线方程为x+y20xy0

D.直线xy40与两坐标轴围成的三角形的面积是8

【答案】ACD

【解析】

通过对称性判断A;两点式方程的体积判断B;截距式方程判断C,三角形的面积判断D

点(20)与(﹣13)的中点(

满足直线yx+1,并且两点的斜率为﹣1

所以点(20)关于直线yx+1的对称点为(﹣13),

所以A正确;

x1x2y1y2时,过(x1y1),(x2y2),

两点的直线方程为,所以B不正确;

经过点(11)且在x轴和y轴上截距都相等的直线方程

x+y20xy0,所以正确;

直线xy40,当x0时,y=﹣4,当y0时,x4

所以直线与两坐标轴围成的三角形的面积是:8,所以D正确;

故选:ACD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列按如下规律分布(其中表示行数,表示列数),若,则下列结果正确的是(

1

2

3

4

1

1

3

9

19

33

2

7

5

11

21

3

17

15

13

23

4

31

29

27

25

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角和以为直径的半圆拼接而成,点为半圈上一点(异于),点在线段上,且满足.已知,设.

1)为了使工艺礼品达到最佳观赏效果,需满足,且达到最大.为何值时,工艺礼品达到最佳观赏效果;

2)为了工艺礼品达到最佳稳定性便于收藏,需满足,且达到最大.为何值时,取得最大值,并求该最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

已知函数为常数)的图像与轴交于点,曲线在点处的切线斜率为.

(1)的值及函数的极值;

(2)证明:当时,

(3)证明:对任意给定的正数,总存在,使得当时,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数的部分图象,MN是它与x轴的两个不同交点,DMN之间的最高点且横坐标为,点是线段DM的中点.

1)求函数的解析式及上的单调增区间;

2)若时,函数的最小值为,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的方程为x2+y24x120,点P31.

1)求该圆的圆心坐标及半径;

2)求过点P的直线被圆C截得弦长最大时的直线l的方程;

3)若圆C的一条弦AB的中点为P,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过长期观察得到:在交通繁忙的时段内,某公路汽车的车流量千辆/小时与汽车的平均速度千米/小时之间的函数关系为

1在该时段内,当汽车的平均速度为多少时,车流量最大,最大车流量为多少?精确到01千辆/小时

2若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的三个角ABC所对的边分别是abc,向量=(2,-1)=(sinBsinC+2cosBcosC),且.

1)求角A的大小;

2)现给出以下三个条件:①B=45②2sinC-(+1)sinB=0③a=2.试从中再选择两个条件以确定ABC,并求出所确定的ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年中央电视台春节联欢晚会分会场之一落户黔东南州黎平县肇兴侗寨,黔东南州某中学高二社会实践小组就社区群众春晚节目的关注度进行了调查,随机抽取80名群众进行调查,将他们的年龄分成6段: ,,, ,得到如图所示的频率分布直方图.问:

(Ⅰ)求这80名群众年龄的中位数;

(Ⅱ)若用分层抽样的方法从年龄在中的群众随机抽取6名,并从这6名群众中选派3人外出宣传黔东南,求选派的3名群众年龄在的概率.

查看答案和解析>>

同步练习册答案