精英家教网 > 高中数学 > 题目详情
甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示:
平均环数
.
x
8.4 8.7 8.7 8.3
方差s2 3.6 3.6 2.2 5.4
从这四个人中选择一人参加奥运会射击项目比赛,最佳人选是(  )
A、甲B、乙C、丙D、丁
分析:甲,乙,丙,丁四个人中乙和丙的平均数最大且相等,甲,乙,丙,丁四个人中丙的方差最小,说明丙的成绩最稳定,得到丙是最佳人选.
解答:解:∵甲,乙,丙,丁四个人中乙和丙的平均数最大且相等,
甲,乙,丙,丁四个人中丙的方差最小,
说明丙的成绩最稳定,
∴综合平均数和方差两个方面说明丙成绩即高又稳定,
∴丙是最佳人选,
故选C.
点评:本题考查随机抽样和一般估计总体的实际应用,考查对于平均数和方差的实际应用,对于几组数据,方差越小数据越稳定,这是经常考查的一种题目类型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示:
平均环数
.
x
8.6 8.9 8.9 8.2
方差s2 3.5 3.5 2.1 5.6
从这四个人中选择一人参加奥运会射击项目比赛,最佳人选是(  )
A、甲B、乙C、丙D、丁

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)某电视台有A、B两种智力闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为
1
2
,丙、丁两人各自闯关成功的概率均为
2
3

(I )求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;
(II) 记游戏A、B被闯关成功的总人数为ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙、丁四人参加一百米决赛.小张认为,冠军不是甲,就是乙.小王坚信冠军绝不是丙.小李则认为,甲、乙都不可能取得冠军.比赛结束后,人们发现这三个人中只有一个人的看法是正确的.请问:谁是一百米决赛的冠军?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)某电视台有A、B两种智力闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为
1
2
,丙、丁两人各自闯关成功的概率均为
2
3

(I)求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;
(II)求游戏A、B被闯关成功的总人数为3的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)甲、乙、丙、丁四人参加国际奥林匹克数学竞赛选拔赛,四人的平均成绩和方差如下表:
平均成绩
.
x
86 89 89 85
方差S2 2.1 3.5 2.1 5.6
从这四人中选择一人参加国际奥林匹克数学竞赛,最佳人选是(  )

查看答案和解析>>

同步练习册答案