(本题满分14分)已知函数
(Ⅰ)求的单调区间;
(Ⅱ)如果当且时,恒成立,求实数的范围.
(1) ① 当时,在上是增函数
② 当时,所以在上是增函数
③ 当时, 所以的单调递增区间和;的单调递减区间
(2)
【解析】
试题分析:(1)定义域为 2分
设
① 当时,对称轴,,所以在上是增函数 4分
② 当时,,所以在上是增函数 6分
③ 当时,令得
令解得;令解得
所以的单调递增区间和;的单调递减区间8分
(2)可化为(※)
设,由(1)知:
① 当时,在上是增函数
若时,;所以
若时,。所以
所以,当时,※式成立 12分
② 当时,在是减函数,所以※式不成立
综上,实数的取值范围是. 14分
解法二 :可化为
设
令
,
所以
在
由洛必达法则
所以
考点:导数的运用
点评:解决该试题的关键是利用导数的符号判定函数单调性,同时能结合函数的单调性来求解函数的最值,解决恒成立,属于基础题。
科目:高中数学 来源:2012-2013学年吉林省高三第一次月考文科数学试卷(解析版) 题型:解答题
(本题满分14分)已知函数
(1)若,求x的值;
(2)若对于恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省惠州市高三第三次调研考试数学理卷 题型:解答题
(本题满分14分)
已知椭圆:的离心率为,过坐标原点且斜率为的直线与相交于、,.
⑴求、的值;
⑵若动圆与椭圆和直线都没有公共点,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省惠州市高三第三次调研考试数学理卷 题型:解答题
((本题满分14分)
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE = x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).
(1)当x=2时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为,
求的最大值;
(3)当取得最大值时,求二面角D-BF-C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com