精英家教网 > 高中数学 > 题目详情
17.将函数y=cos2x的图象向左平移$\frac{π}{4}$个单位,所得图象对应的函数表达式为y=-sin2x.

分析 根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.

解答 解:将函数y=cos2x的图象向左平移$\frac{π}{4}$个单位,
所得图象对应的解析式为y=cos2(x+$\frac{π}{4}$)=cos(2x+$\frac{π}{2}$)=-sin2x.
故答案为:y=-sin2x.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知a,b∈R,i是虚数单位,若a-2bi与1+4i互为共轭复数,则|a+bi|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合A={x|x≤-4或x≥2},B={x||x-1|≤3},则等于∁R(A∩B)(  )
A.[2,4]B.[-2,2)C.(-∞,2)∪(4,+∞)D.(-∞,-4)∪(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数$f(x)=b{x^3}-\frac{3}{2}(2b+1){x^2}+6x+a(b>0)$.
(1)求f(x)的单调区间;
(2)设b=1,若方程f(x)=0有且只有一个实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在△ABC中,点D在线段BC上,且BD=2DC,若$\overrightarrow{AD}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,则$\frac{λ}{μ}$=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.2D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=cosx•cos(x-\frac{π}{3})$.
(1)求函数f(x)的单调增区间;
(2)若直线y=a与函数f(x)的图象无公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)={log_4}\frac{x-1}{x+1}$.
(Ⅰ)若$f(a)=\frac{1}{2}$,求a的值;
(Ⅱ)判断函数f(x)的奇偶性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=a(x+\frac{1}{x})-|{x-\frac{1}{x}}|$(a∈R).
(Ⅰ)当$a=\frac{1}{2}$时,求f(x)的单调区间;
(Ⅱ)若$f(x)≥\frac{1}{2}x$对任意的x>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,设E为PD的中点.
(1)证明:PB∥平面AEC;
(2)设异面直线BP与CD所成角为45°,AP=1,AD=$\sqrt{3}$,求三棱锥E-ACD的体积.

查看答案和解析>>

同步练习册答案