精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四边形ABCDRtABCRtBCD拼接而成,其中∠BAC=∠BCD90°,∠DBC30°ABAC,将△ABC沿着BC折起,

1)若,求异面直线ABCD所成角的余弦值;

2)当四面体ABCD的体积最大时,求二面角ABCD的余弦值.

【答案】12

【解析】

1)根据异面直角所成角的空间向量计算公式,再利用题给信息构造空间直角坐标系,即可求出所求角;

2)当平面ABC⊥平面BCD时,四面体ABCD体积有最大值,即可得答案.

1)因为∠BAC90°,且ABACBC

,∴ABACAD

∴作AO⊥平面BCD,垂足O必为△BCD的外心,

又因为△BCD中,∠BCD90°,△BCD的外心在斜边中点处,即O点为BD中点,

则以OA方向建立z轴,过O点作x轴平行于BC,作y轴平行于CD,如图所示

得坐标,

0,﹣20),

ABCD所成角为

2)当平面ABC⊥平面BCD时,四面体ABCD体积有最大值,此时二面角ABCD90°,其余弦值为0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动点P到两定点M(﹣30),N30)的距离满足|PM|2|PN|.

1)求证:点P的轨迹为圆;

2)记(1)中轨迹为⊙C,过定点(01)的直线l与⊙C交于AB两点,求△ABC面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲船在岛A的正南B处,以的速度向正北航行,,同时乙船自岛A出发以的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的中心在坐标原点O,两个焦点分别为A﹣10),B10),一个顶点为H20).

1)求椭圆E的标准方程;

2)对于x轴上的点Pt0),椭圆E上存在点M,使得MP⊥MH,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是平行四边形,∠ADC60°ADAC2OAC的中点,PO⊥平面ABCDPO4MPD的中点.

1)证明:MO∥平面PAB

2)求直线AM与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是(

A.10010B.10020C.20010D.20020

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,平面的中点.

(I)求证,平面

(II)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用系统抽样法从140名学生中抽取容量为20的样本,将140名学生从1140编号.按编号顺序平均分成20组(17号,814号,134140号),若第17组抽出的号码为117,则第一组中按此抽样方法确定的号码是(

A.7B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于给定的正整数k,若数列{an}满足

=2kan对任意正整数n(n> k) 总成立,则称数列{an} 是“P(k)数列”.

(1)证明:等差数列{an}是“P(3)数列”;

若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.

查看答案和解析>>

同步练习册答案