精英家教网 > 高中数学 > 题目详情

【题目】某地区2010年至2016年农村居民家庭人均纯收入y(单位:千元)的数据如下表:

年 份

2010

2011

2012

2013

2014

2015

2016

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y关于t的回归直线方程;

(2)利用(1)中的回归方程,分析2010年至2016年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2018年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘估计公式分别

【答案】(1);(2)6.8千元

【解析】分析:(1)由题中所给的数据求得回归方程即可;

(2)结合回归方程的预测作用和(1)中的结论整理计算即可求得最终结果.

详解(1)由所给数据计算得

=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,

所求回归方程

(2)由(1)2010年至2016年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.

将2018年的年份代号t=9代入(1)中的回归方程,

故预测该地区2018年农村居民家庭人均纯收入为6.8千元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】12分)已知函数fx=

1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.

2)求该函数在区间[1,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】样本(x1 , x2…,xn)的平均数为x,样本(y1 , y2 , …,ym)的平均数为 ).若样本(x1 , x2…,xn , y1 , y2 , …,ym)的平均数 +(1﹣α) ,其中0<α< ,则n,m的大小关系为( )
A.n<m
B.n>m
C.n=m
D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三点O(0,0),A(﹣2,1),B(2,1),曲线C上任意一点M(x,y)满足| + |= + )+2.
(1)求曲线C的方程;
(2)动点Q(x0 , y0)(﹣2<x0<2)在曲线C上,曲线C在点Q处的切线为直线l:是否存在定点P(0,t)(t<0),使得l与PA,PB都相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值.若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)设的极值点.求实数的值,并求函数的单调区间;

(II)证明:当 时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一位同学家里开了一个小卖部,他为了研究气温对热茶销售的影响,经过统计,得到一个卖出热茶杯数与当天气温的对比表如下:

气温x/

-5

0

4

7

12

15

19

23

27

31

36

热茶销售杯数y/杯

156

150

132

128

130

116

104

89

93

76

54

(1)画出散点图;

(2)你能从散点图中发现气温与热茶的销售杯数之间关系的一般规律吗?

(3)如果近似成线性关系的话,请画出一条直线来近似地表示这种线性关系;

(4)试求出回归直线方程;

(5)利用(4)的回归方程,若某天的气温是2 ,预测这一天卖出热茶的杯数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆 (a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知(1,e)和(e, )都在椭圆上,其中e为椭圆的离心率.

(1)求椭圆的方程;
(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.
(i)若AF1﹣BF2= ,求直线AF1的斜率;
(ii)求证:PF1+PF2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,点是四边形的中心,关于直线,下列说法正确的是( )

A. B.

C. 平面D. 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .

(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;

( Ⅱ ) 设直线轴和轴的交点分别为为圆上的任意一点,求的取值范围.

【答案】(1);.

(2).

【解析】试题分析】(I)利用圆心和半径,写出圆的参数方程,将圆的极坐标方程展开后化简得直角坐标方程.(II)求得两点的坐标, 设点,代入向量,利用三角函数的值域来求得取值范围.

试题解析】

(Ⅰ)圆的参数方程为为参数).

直线的直角坐标方程为.

(Ⅱ)由直线的方程可得点,点.

设点,则 .

.

由(Ⅰ)知,则 .

因为,所以.

型】解答
束】
23

【题目】选修4-5:不等式选讲

已知函数 .

(Ⅰ)若对于任意 都满足,求的值;

(Ⅱ)若存在,使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案