精英家教网 > 高中数学 > 题目详情

(1)已知定点,动点N满足(O为坐标原点),,求点P的轨迹方程.

(2)如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点

(ⅰ)设直线的斜率分别为,求证:为定值;
(ⅱ)当点运动时,以为直径的圆是否经过定点?请证明你的结论.

(1);(2)(ⅰ);(ⅱ)定点.

解析试题分析:(Ⅰ)由题意,先确定点N是MF1中点,然后由确定|PM|=|PF1|,从而得到|∣PF1|-|PF2∣|=||PM|-|PF2||=|MF2|=2<|F1F2|,再根据双曲线的几何性质,即可得到点P的轨迹方程;(2)(ⅰ)设出点,由斜率公式得到的表达式,再根据点在椭圆上,得到其为定值;(ⅱ)将以为直径的圆上任一点坐标设出,即设点,再根据过直径的弦所对的圆周角为直角这一几何性质得到,从而得到点的轨迹方程也即以为直径的圆的方程为
.因为的系数有参数,故,从而得到圆上定点.即得到所求.
试题解析:(Ⅰ)连接ON∵ ∴点N是MF1中点 ∴|MF2|=2|NO|=2
 ∴F1M⊥PN   ∴|PM|=|PF1|
∴|∣PF1|-|PF2∣|=||PM|-|PF2||=|MF2|=2<|F1F2|
由双曲线的定义可知:点P的轨迹是以F1,F2为焦点的双曲线.
点P的轨迹方程是  4分
(ⅰ),令,则由题设可知
直线的斜率的斜率,又点在椭圆上,所以
,(),从而有.8分
(ⅱ)设点是以为直径的圆上任意一点,则,又易求得.所以.故有
.又,化简后得到以为直径的圆的方程为
.
,解得.
所以以为直径的圆恒过定点.
考点:1.点的轨迹方程;2.直线与圆锥曲线的位置关系;3.向量数量积的坐标表示.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆C:的离心率与等轴双曲线的离心率互为倒数,直线与以原点为圆心,以椭圆C的短半轴长为半径的圆相切。
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点(―1,―1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线方程2x2-y2=2.
(1)求以A(2,1)为中点的双曲线的弦所在的直线方程;
(2)过点(1,1)能否作直线l,使l与双曲线交于Q1,Q2两点,且Q1,Q2两点的中点为(1,1)?如果存在,求出它的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为椭圆上任意一点,为左右焦点.如图所示:

(1)若的中点为,求证
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左右两焦点分别为是椭圆上一点,且在轴上方,

(1)求椭圆的离心率的取值范围;
(2)当取最大值时,过的圆的截轴的线段长为6,求椭圆的方程;
(3)在(2)的条件下,过椭圆右准线上任一点引圆的两条切线,切点分别为.试探究直线是否过定点?若过定点,请求出该定点;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆中心在原点,焦点在轴上,焦距为2,离心率为
(1)求椭圆的方程;
(2)设直线经过点(0,1),且与椭圆交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的顶点在椭圆上,在直线上,且
(1)当边通过坐标原点时,求的长及的面积;
(2)当,且斜边的长最大时,求所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,为坐标原点,如果一个椭圆经过点P(3,),且以点F(2,0)为它的一个焦点.
(1)求此椭圆的标准方程;
(2)在(1)中求过点F(2,0)的弦AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆抛物线的焦点均在轴上,的中心和 的顶点均为坐标原点从每条曲线上取两个点,将其坐标记录于下表中:











(Ⅰ)求分别适合的方程的点的坐标;
(Ⅱ)求的标准方程.

查看答案和解析>>

同步练习册答案