精英家教网 > 高中数学 > 题目详情
6个人分4本不 同的书,每人至多一本,而且必须分完,那么不同分法的种数是( )
A.64
B.46
C.
D.A64
【答案】分析:把位置和元素互换更容易解,6个人分4本不 同的书,每人至多一本,而且必须分完,相当于4个元素在6个位置进行排列.
解答:解:6个人分4本不 同的书,每人至多一本,而且必须分完,
相当于4个元素在6个位置进行排列,共有A64种结果,
故选D.
点评:本题考查排列问题,是一个带有限制条件的排列问题,这种问题在解题时注意条件中所给的限制条件,注意题目的变式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6个人分4本不 同的书,每人至多一本,而且必须分完,那么不同分法的种数是(  )
A、64
B、46
C、
A
4
6
4!
D、A64

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

6个人分4本不 同的书,每人至多一本,而且必须分完,那么不同分法的种数是


  1. A.
    64
  2. B.
    46
  3. C.
    数学公式
  4. D.
    A64

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

6个人分4本不 同的书,每人至多一本,而且必须分完,那么不同分法的种数是(  )
A.64B.46C.
A46
4!
D.A64

查看答案和解析>>

同步练习册答案