分析 利用三角形的三角和为π及三角函数的诱导公式化简已知的等式,利用三角形中内角的范围,求出∠C的大小,三角形的正弦定理将边BC,CA用角A的三角函数表示,利用两角差的正弦公式展开,再利用三角函数中的公式asinα+bcosα=$\sqrt{{a}^{2}+{b}^{2}}$sin(α+θ)将三角形的周长化简成y=Asin(ωx+φ)+k形式,利用三角函数的有界性求出△ABC周长的取值范围.
解答 解:由tan$\frac{A+B}{2}$=2sinC及$\frac{A+B}{2}$=$\frac{π}{2}$-$\frac{C}{2}$,得cot$\frac{C}{2}$=2sinC,
∴$\frac{cos\frac{C}{2}}{sin\frac{C}{2}}$=4sin$\frac{C}{2}$cos$\frac{C}{2}$
∵0<$\frac{C}{2}$<$\frac{π}{2}$,cos$\frac{C}{2}$>0,sin$\frac{C}{2}$>0,
∴sin2$\frac{C}{2}$=$\frac{1}{4}$,sin$\frac{C}{2}$=$\frac{1}{2}$,
∴$\frac{C}{2}$=$\frac{π}{6}$,
∴C=$\frac{π}{3}$,
在△ABC中,由正弦定理,得:$\frac{AB}{sinC}$=$\frac{BC}{sinA}$=$\frac{CA}{sinB}$=$\frac{2\sqrt{3}}{3}$,
△ABC的周长y=AB+BC+CA=3+$\frac{2\sqrt{3}}{3}$sinA+$\frac{2\sqrt{3}}{3}$sin($\frac{2π}{3}$-A)
=3+$\frac{2\sqrt{3}}{3}$($\frac{3}{2}$sinA+$\frac{\sqrt{3}}{2}$cosA)
=3+2sin(A+$\frac{π}{6}$),
∵$\frac{π}{6}$<A+$\frac{π}{6}$<$\frac{5π}{6}$,
∴$\frac{1}{2}$<sin(A+$\frac{π}{6}$)≤1,
所以,△ABC周长的取值范围是(4,5].
故答案为:(4,5].
点评 解决三角函数的取值范围问题一般利用三角函数的诱导公式、两个角的和、差公式、倍角公式以及公式asinα+bcosα=$\sqrt{{a}^{2}+{b}^{2}}$sin(α+θ)将三角函数化为y=Asin(ωx+φ)+k形式,本题属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{16}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{32}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com