精英家教网 > 高中数学 > 题目详情
17.已知k∈N*,若曲线x2+y2=k2与曲线xy=k无交点,则k=1.

分析 曲线x2+y2=k2与曲线xy=k联立,可得x4-k2x2+k2=0,利用△=0,求出k,结合k∈N*,若曲线x2+y2=k2与曲线xy=k无交点,即可求出k.

解答 解:曲线x2+y2=k2与曲线xy=k联立,可得x4-k2x2+k2=0
∴△=k4-4k2=0,
∴k=2,
∵k∈N*,若曲线x2+y2=k2与曲线xy=k无交点,
∴k=1.
故答案为:1.

点评 本题考查曲线与方程,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.函数f(x)=6-x-x2的单调递减区间是(  )
A.$[-\frac{1}{2},+∞)$B.$[-\frac{1}{2},2)$C.$(-∞,-\frac{1}{2}]$D.(-3,$-\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.有一隧道,内设双行线公路,同方向有两个车道(共有四个车道),每个车道宽为3m,此隧道的截面由一个长方形和一抛物线构成.如图所示,隧道高8m,宽16m,为了保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方面上高度之差至少为0.25m,靠近中轴线的车道为快车道,两侧的车道为慢车道,求车辆通过隧道时,慢车道的限制高度(用分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在直三棱柱ABC-A1B1C1中,AB=BC=2,AC=2$\sqrt{2}$,AA1=1,点D为BC的中点.
(1)求证:A1B∥平面ADC1
(2)设A1B的中点为M,求三棱锥M-AC1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一条渐近线被圆M:x2+y2-8y+15=0截得的弦长为$\sqrt{2}$,则双曲线的离心率为4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直线y=a分别与曲线y=2(x+1),y=x+lnx交于A、B,则|AB|的最小值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.直线y=x-m与抛物线y2=2x相交于A,B两点,且OA⊥OB求直线AB的方程.并求弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.市场调查公司为了了解某小区居民在阅读报纸方面的取向,抽样调查了500户居民,调查的结果显示:订阅晨报的有334户,订阅晚报的有297户,其中两种都订的有150户,则两种都不订的有19户.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算${∫}_{0}^{2}$x3dx的值,并从几何上解释这个值表示什么.

查看答案和解析>>

同步练习册答案