精英家教网 > 高中数学 > 题目详情
10.求过点P(2,4),并且与圆(x-1)2+(y+3)2=1相切的直线方程.

分析 先判断直线斜率不存在时,是否满足条件,若直线的斜率存在,设过点P的圆的切线斜率为k,写出点斜式方程再化为一般式.根据圆心到切线的距离等于圆的半径这一性质,由点到直线的距离公式列出含k的方程,由方程解得k,然后代回所设切线方程即可.

解答 解:当过点P的切线斜率不存在时,方程为x=2,
此时圆心(1,-3)到x=2的距离等于圆的半径1,满足条件;
当过点P的切线斜率存在时,设所求切线的斜率为k,
由点斜式可得切线方程为y-4=k(x-2),即kx-y-2k+4=0,
此时圆心到直线的距离d=$\frac{|k+3-2k+4|}{\sqrt{1+{k}^{2}}}$=1,
解得:k=$\frac{24}{7}$,
此时切线的方程为:$\frac{24}{7}$x-y-$\frac{48}{7}$+4=0,即24x-7y-20=0,
综上所述,过点P(2,4),并且与圆(x-1)2+(y+3)2=1相切的直线方程为:x=2,或24x-7y-20=0.

点评 本题考查直线与圆的位置关系,考查切线方程.若点在圆外,所求切线有两条,特别注意当直线斜率不存在时的情况,不要漏解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为$\frac{3}{4}$.过定点D(0,p)作直线与抛物线C相交于A,B两点.
(I)求抛物线C的方程;
(II)若点N是点D关于坐标原点O的对称点,求△ANB面积的最小值;
(Ⅲ)是否存在垂直于y轴的直线l,使得l被以AD为直径的圆截得的弦长恒为定值?若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在递增等比数列{an}中,a2a16=6,a4+a14=5,则$\frac{{{a_{20}}}}{{{a_{10}}}}$等于(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{2}{3}$或$\frac{3}{2}$D.$-\frac{2}{3}$或$-\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若函数f(x)是定义在(0,+∞)上的函数,对任意x,y∈R+,都有f($\frac{x}{y}$)=f(x)-f(y),且x>1时,f(x)<0(1)求f(1)的值;
(2)判断f(x)的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.绝对值不等式|x|<9的解集为(-9,9).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.平面内有四边形ABCD,$\overrightarrow{BC}$=2$\overrightarrow{AD}$,且AB=CD=DA=2,$\overrightarrow{AD}$=$\overrightarrow{a}$,$\overrightarrow{BA}$=$\overrightarrow{b}$.
(1)若CD的中点为M,试用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{BM}$;
(2)AB上有一点P,PC和BM交于点Q,|$\overrightarrow{PQ}$|:|$\overrightarrow{QC}$|=1:2.求|$\overrightarrow{AP}$|:|$\overrightarrow{PB}$|和|$\overrightarrow{BQ}$|:|$\overrightarrow{QM}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在等差数列{an}中,前10项的和为20,前20项的和为60,则前30项的和为(  )
A.80B.100C.120D.140

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设y=$\frac{|sinα|}{sinα}+\frac{|cosα|}{cosα}$,根据下列条件,分别求出角α的取值范围.
(1)y=-2;
(2)y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=2x-1-2,x∈(-∞,2]的值域为(-2,0].

查看答案和解析>>

同步练习册答案