精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,为坐标原点.对任意的点,定义.任取点,记,若此时成立,则称点相关.

1)分别判断下面各组中两点是否相关,并说明理由;

;②

2)给定,点集

)求集合中与点相关的点的个数;

)若,且对于任意的,点相关,求中元素个数的最大值.

【答案】1)①相关;②不相关.2)(个(.

【解析】

1)根据所给定义,代入不等式化简变形可得对应坐标满足的关系,即可判断所给两个点的坐标是否符合定义要求.

2)()根据所给点集,依次判断在四个象限内满足的点个数,坐标轴上及原点的个数,即可求得集合中与点相关的点的个数;()由(1)可知相关点满足,利用分类讨论证明,即可求得中元素个数的最大值.

若点相关,则,而

不妨设

则由定义可知

化简变形可得

1)对于①;对应坐标取绝对值,代入可知成立,因此相关;

②对应坐标取绝对值,代入可知,因此不相关.

2)()在第一象限内,,可知,有个点;同理可知,在第二象限、第三象限、第四象限也各有个点.

轴正半轴上,点满足条件;在轴负半轴上,点满足条件;

轴正半轴上,点满足条件;在轴负半轴上,点满足条件;

原点满足条件;

因此集合中共有个点与点相关.

)若两个不同的点相关,其中

可知.

下面证明.

,则,成立;

,则

,则,亦成立.

由于

因此最多有个点两两相关,其中最多有个点在第一象限;最少有1个点在坐标轴正半轴上,一个点为原点.

因此中元素个数的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数的极值;

(2)当时,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的单调区间;

2)若曲线在点(10)处的切线为l : xy10,求ab的值;

3)若恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系.xOy中,曲线C1的参数方程为 为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.

1)求曲线C1的普通方程和C2的直角坐标方程;

2)已知曲线C2的极坐标方程为,点A是曲线C3C1的交点,点B是曲线C3C2的交点,且AB均异于原点O,且|AB|=4,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了预防新型冠状病毒的传染,人员之间需要保持一米以上的安全距离.某公司会议室共有四行四列座椅,并且相邻两个座椅之间的距离超过一米,为了保证更加安全,公司规定在此会议室开会时,每一行、每一列均不能有连续三人就座.例如下图中第一列所示情况不满足条件(其中“√”表示就座人员).根据该公司要求,该会议室最多可容纳的就座人数为(

A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,解不等式

(Ⅱ)若不等式至少有一个负数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线)与交于两点,的中点,为坐标原点.

1)求直线斜率的最大值;

2)若点在直线上,且为等边三角形,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国农业银行广元分行发行金穗广元·剑门关旅游卡是以游广元、知广元、爱广元、共享和谐广元为主题活动的一项经济性和公益性相结合的重大举措,以最优惠的价格惠及广元户籍市民、浙江及黑龙江援建省群众、省内援建市市民,凡上述对象均可办理此卡,本人凭此卡及本人身份证一年内(期满后可重新充值办理)在广元市范围内可无限次游览所有售门票景区景点,如:剑门关、朝天明月峡、旺苍鼓城山七里峡、青川唐家河、广元皇泽寺、苍溪梨博园、昭化古城等,现有浙江及黑龙江援建省群众甲乙两人准备到广元旅游(同游),他们决定游览上面个景点,首先游览剑门关但不能最后游览朝天明月峡的游览顺序有( )种.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线经过点,两个焦点为

1)求的方程;

2)设上一点,直线与直线相交于点,与直线相交于点,证明:当点在上移动时,为定值,并求此定值.

查看答案和解析>>

同步练习册答案