精英家教网 > 高中数学 > 题目详情
9.在等腰△ABC中,AB=AC=1,B=30°,则向量$\overrightarrow{AB}$在向量$\overrightarrow{AC}$上的投影等于$-\frac{1}{2}$.

分析 根据等腰三角形的性质求出角A的大小,结合向量投影的定义进行求解即可.

解答 解:∵等腰△ABC中,AB=AC=1,B=30°,
∴A=180°-30°-30°=120°,
则向量$\overrightarrow{AB}$在向量$\overrightarrow{AC}$上投影为$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AC}|}$=$\frac{|\overrightarrow{AB}||\overrightarrow{AC}|cos120°}{|\overrightarrow{AC}|}$=-$\frac{1}{2}$,
故答案为:$-\frac{1}{2}$.

点评 本题主要考查向量投影的计算,根据定义转化向量数量积是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+cx+d有极值,则实数c的取值范围是(-∞,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=x2+bln(x+1),如果f(x)在定义域内既有极大值又有极小值,则实数b的取值范围是(  )
A.(-∞,$\frac{1}{2}$)B.(-∞,0)∪(0,$\frac{1}{2}$)C.(0,$\frac{1}{2}$)D.[0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=ax3-x+1在x∈(-∞,+∞)内是减函数,则(  )
A.a≥0B.a≤0C.a<0D.a≤-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设目标函数z=x+ay的可行域是△ABC的内部及边界,其中A(1,0),B(3,1),C(2,3).若目标函数取得最小值的最优解有无穷多个,则a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=-x3+3ax2-4(a∈R).
(1)若a≠0,求f(x)的单调区间;
(2)若函数f(x)在x=b处取得极值-$\frac{7}{2}$,且g(x)=f(x)+mx在[0,2]上单调递减,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.执行如图所示的程序框图,输出的S值是(  )
A.0B.$\frac{\sqrt{2}}{2}$C.1+$\frac{\sqrt{2}}{2}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知数列{an}满足an=logn+1(n+2)(n∈N*),定义:使乘积a1•a2•a3…ak为正整数的k(k∈N*)叫做“期盼数”,则在区间[1,2016]内所有的“期盼数”的和为(  )
A.2036B.4076C.4072D.2026

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.曲线y=x+$\frac{1}{3}$x3在点(1,$\frac{4}{3}$)处的切线和坐标轴围成的三角形的面积为(  )
A.3B.2C.$\frac{1}{3}$D.$\frac{1}{9}$

查看答案和解析>>

同步练习册答案