精英家教网 > 高中数学 > 题目详情

已知

(1)求函数上的最小值

(2)对一切的恒成立,求实数a的取值范围

(3)证明对一切,都有成立

 

【答案】

(1)(2)(3)主要是求出函数的最小值

【解析】

试题分析:解:(1)时,单调递减,在单调递增,当,即时,

(2),则

单调递增,单调递减,,因为对一切恒成立,

(3)问题等价于证明

由(1)可知的最小值为,当且仅当x=时取得

,则,易得。当且仅当x=1时取得.从而对一切,都有成立 

考点:导数的应用

点评:导数常应用于求曲线的切线方程、求函数的最值与单调区间、证明不等式和解不等式中参数的取值范围等。本题是应用导数求函数的最小值、解决不等式中参数的取值范围和证明不等式。

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年江西师大附中高三年级上学期期中考试文数学试卷(解析版) 题型:解答题

已知

(1)求函数上的最小值;

(2)对一切恒成立,求实数的取值范围;

(3)证明:对一切,都有成立.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年重庆市高三上学期半期考试理科数学试卷(解析版) 题型:解答题

已知.

(1)求函数上的最小值;

(2)对一切恒成立,求实数的取值范围;

(3)证明:对一切,都有成立.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省唐山市高三第一次月考文科数学试卷(解析版) 题型:解答题

(12分)已知

(1)求函数上的最小值;

(2)对一切恒成立,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省高三10月月考理科数学卷 题型:解答题

已知

(1)求函数>0上的最小值;

(2)对一切恒成立,求实数的取值范围;

(3)证明:对一切,都有成立.

 

查看答案和解析>>

同步练习册答案