精英家教网 > 高中数学 > 题目详情

【题目】已知点P所在平面外一点,点分别是的重心.

1)求证:平面平面ABC

2)求的值.

【答案】1)证明见解析;(2

【解析】

(1) 连接,并延长交BC于点M,连接,并延长交AC于点N,连接,并延长交AB于点Q,连接MN,NQ.再证明即可.

(2)根据平行可得边长的比例关系再求解即可.

1)证明:如图,连接,并延长交BC于点M,连接,并延长交AC于点N,连接,并延长交AB于点Q,连接MN,NQ.,,分别是,,的重心,,N,Q分别是BC,AC,AB的中点,且,.同理,可得.

平面ABC,平面ABC,平面ABC.

同理,可证平面ABC.

,

平面,平面,

平面平面ABC.

2)由(1)知,且,即.,N分别是BC,AC的中点,.,,

的值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》中,将底面为长方形且有一条侧棱与地面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑,首届中国国际进口博览会的某展馆棚顶一角的钢结构可以抽象为空间图形阳马,如图所示,在阳马中,底面.

(1)已知,斜梁与底面所成角为,求立柱的长;(精确到

(2)求证:四面体为鳖臑.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现某路口对一周内过往人员进行健康码检查安排7名工作人员进行值班,每人值班1天,每天1人,其中甲乙两人需要安排在相邻两天,且甲不排在周三,则不同的安排方法有( )

A.1440B.1400C.1320D.1200

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,EFG分别为AB的中点.

求证:平面平面BEF

若平面,求证:HBC的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在(﹣∞,0)上的函数f(x),其导函数记为f'(x),若成立,则下列正确的是(  )

A. f(﹣e)﹣e2f(﹣1)>0 B.

C. e2f(﹣e)﹣f(﹣1)>0 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位计划在一水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.

(1)求未来3年中,设表示流量超过120的年数,求的分布列及期望;

(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系

年入流量

发电机最多可运行台数

1

2

3

若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C所对的边分别为a,b,c,向量=(sinA+sinC,sinB),=(c﹣b,c﹣a),且

(1)求角A的大小;

(2)若a=3,b+c=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:

土地使用面积(单位:亩)

管理时间(单位:月)

并调查了某村名村民参与管理的意愿,得到的部分数据如下表所示:

愿意参与管理

不愿意参与管理

男性村民

女性村民

求出相关系数的大小,并判断管理时间与土地使用面积是否线性相关?

若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取人,记取到不愿意参与管理的男性村民的人数为,求的分布列及数学期望.

参考公式:,参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱的侧面是菱形,.

(1) 求证:

(2)若,求的值,使得 二面角的余弦值的为 .

查看答案和解析>>

同步练习册答案