精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,若函数g(x)=f2(x)﹣axf(x)恰有6个零点,则a的取值范围是(
A.(0,3)
B.(1,3)
C.(2,3)
D.(0,2)

【答案】C
【解析】解:令g(x)=f2(x)﹣axf(x)=0,
则f(x)=0,或f(x)﹣ax=0,
①当f(x)=0时,即3x+1=0或x2﹣4x+1=0,
解得x=﹣ ,x=2﹣ ,x=2+ ,即有三个零点,
②当f(x)﹣ax=0,即f(x)=ax,
∵x=0时,f(0)=1≠0,即x≠0,
∴方程 =a有三个根,
当x<0时, =3+
当x>0时, =|x+ ﹣4|,
分别画出y= (紫线)与y=a的图象,如右图所示,
由图可知,当a∈(2,3)时,两函数图象有三个交点,
综合以上讨论得,当a∈(2,3)时,原函数g(x)有六个零点.
所以答案是:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本题满分10分)已知等差数列{an}满足a1+a2=10,a4-a3=2.

(1)求{an}的通项公式.

(2)设等比数列{bn}满足b2=a3,b3=a7.问:b6与数列{an}的第几项相等?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如下:

测试指标

[70,76)

[76,82)

[82,88)

[88,94)

[94,100]

芯片甲

8

12

40

32

8

芯片乙

7

18

40

29

6


(1)试分别估计芯片甲,芯片乙为合格品的概率;
(2)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(1)的前提下,记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的分布列及生产1件芯片甲和1件芯片乙所得总利润的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为 (α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为
(1)求C的普通方程和l的倾斜角;
(2)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形中, , 分别为的中点,对于常数,在梯形的四条边上恰好有8个不同的点,使得成立,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四位同学得到方程2x+e0.3x﹣100=0(其中e=2.7182…)的大于零的近似解依次为①50;②50.1;③49.5;④50.001,你认为的答案为最佳近似解(请填甲、乙、丙、丁中的一个)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣a(x+1)(a≠0).
(1)讨论f(x)的单调性;
(2)若f(x)>a2﹣a,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的正半轴重合,圆的极坐标方程为,直线的参数方程为为参数).

(Ⅰ)若 是直线轴的交点, 是圆上一动点,求的最大值;

(Ⅱ)若直线被圆截得的弦长等于圆的半径倍,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知.f(x)=sinxcosx-cos2x

(1)求f(x)的最小正周期,并求其图象对称中心的坐标;

(2)当0≤x时,求函数f(x)的值域.

查看答案和解析>>

同步练习册答案