精英家教网 > 高中数学 > 题目详情
3.四棱锥P-ABCD中底面ABCD为直角梯形,AD∥BC,∠ADC=90°,面PAD⊥面ABCD,Q为AD的中点,PA=PD=2,AD=2BC=2,CD=$\sqrt{3}$.
①求证:QB⊥面PAD;
②求二面角Q-PA-B的正切值.

分析 ①由已知得DQ$\underset{∥}{=}$CB,从而得到BQ⊥AD,由此能证明QB⊥面PAD.
②以Q为原点,QA为x轴,QB为y轴,QP为z轴,建立空间直角坐标系,利用向量法能求出二面角Q-PA-B的正切值.

解答 ①证明:∵四棱锥P-ABCD中底面ABCD为直角梯形,AD∥BC,∠ADC=90°,
Q为AD的中点,AD=2BC=2,
∴DQ$\underset{∥}{=}$CB,∴四边形BCDQ是矩形,∴BQ⊥AD,
∵面PAD⊥面ABCD,∴QB⊥面PAD.
②解:∵四棱锥P-ABCD中底面ABCD为直角梯形,AD∥BC,∠ADC=90°,
面PAD⊥面ABCD,Q为AD的中点,PA=PD=2,AD=2BC=2,CD=$\sqrt{3}$,
∴QP⊥平面ABCD,BQ⊥AD,
∴以Q为原点,QA为x轴,QB为y轴,QP为z轴,建立空间直角坐标系,
则Q(0,0,0),P(0,0,$\sqrt{3}$),A(1,0,0),B(0,$\sqrt{3}$,0),
$\overrightarrow{PA}$=(1,0,-$\sqrt{3}$),$\overrightarrow{PB}$=(0,$\sqrt{3}$,-$\sqrt{3}$),
设平面PAB的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PA}=x-\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{PB}=\sqrt{3}y-\sqrt{3}z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=($\sqrt{3},1,1$),
又平面PAQ的法向量$\overrightarrow{m}$=(0,1,0),
设二面角Q-PA-B的平面角为θ,
则cosθ=|cos<$\overrightarrow{m},\overrightarrow{n}$>|=|$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$|=|$\frac{1}{\sqrt{5}}$|=$\frac{\sqrt{5}}{5}$,
∴tanα=2.
∴二面角Q-PA-B的正切值为2.

点评 本题考查线面垂直的证明,考查二面角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力和向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知如图:四边形ABCD是矩形,BC⊥平面ABE,且AE=EB=BC=2,点F为CE上一点,且BF⊥平面ACE.
(1)求证:AE∥平面BFD;
(2)求二面角C-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC为锐角三角形,AB≠AC,以BC为直径的圆分别交边AB和AC于点M和N,记BC得中点为O,∠BAC的平分线和∠MON的平分线交于点R.证明:△BMR的外接圆和△CNR的外接圆有一个交点在BC上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,点A(0,1)在椭圆C1内,半焦距长为1,P为椭圆C1上任意一点,且|PA|+|PF2|的最大值为4+$\sqrt{2}$,过点F2的直线l与椭圆C1相交于M(x1,y1)、N(x2,y2)两点.
(1)求椭圆C1的方程;
(2)求使$\overrightarrow{{F}_{1}M}$+$\overrightarrow{{F}_{2}M}$=$\overrightarrow{{F}_{1}R}$成立的动点R的轨迹方程;
(3)试问△F1MN的内切圆的面积是否存在最大值?若存在,请求出这个最大值及此时的直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.不等式ax2+2ax+4≥0对一切x恒成立,则a的取值范围是[0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在正方体ABCD-A1B1C1D1
(1)二面角A-B1C-A1的大小 
(2)平面A1DC1平面A1D1DA所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求函数y=x2-2ax-a2-1在[0,2]上的最小值g(a)和最大值M(a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x),g(x)都是R上的奇函数,f(x)>0的解集为(a2,b),g(x)>0的解集为($\frac{{a}^{2}}{2}$,$\frac{b}{2}$),且a2<$\frac{b}{2}$,则f(x)•g(x)>0的解集为(  )
A.(-$\frac{b}{2}$,-a2)∪(a2,$\frac{b}{2}$)B.(-$\frac{b}{2}$,a2)∪(-a2,$\frac{b}{2}$)C.(-$\frac{b}{2}$,-a2)∪(a2,b)D.(-b,-a2)∪(a2,$\frac{b}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\sqrt{2}$cos$({x-\frac{π}{12}})$,x∈R.
(Ⅰ)求$f({-\frac{π}{6}})$的值;
(Ⅱ) 在平面直角坐标系中,以Ox为始边作角θ,它的终边与单位圆相交于点P($\frac{3}{5}$,-$\frac{4}{5}$),求$f({2θ+\frac{π}{3}})$.

查看答案和解析>>

同步练习册答案