精英家教网 > 高中数学 > 题目详情
在正方体ABCD–A1B1C1D1中,M,N分别为棱AA1和B1B的中点,若θ为直线CM与所成的角,则="    "                                                                                               (   )                                                
A.B.C.D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,多面体ABCDS中,面ABCD为矩形, 
(1)求证:CD;
(2)求AD与SB所成角的余弦值;
(3)求二面角A—SB—D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)

如图,圆柱OO1内有一个三棱柱ABC-A1B1C1
三棱柱的底面为圆柱底面的内接三角形,且AB是圆O的直径。
(Ⅰ)证明:平面A1ACC1⊥平面B1BCC1
(Ⅱ)设AB=AA1。在圆柱OO1内随机选取一点,记该点取自于
三棱柱ABC-A1B1C1内的概率为P。
(i)                            当点C在圆周上运动时,求P的最大值;
记平面A1ACC1与平面B1OC所成的角为(0°<  90°)。当P取最大值时,求cos的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知ABCD是矩形,AD=4,AB=2,E、F分别是线段AB、BC的中点,PA⊥面ABCD。
(1)证明:PF⊥FD;
(2)在PA上是否存在点G,使得EG//平面PFD。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

半径为的球面上有三点,已知间的球面距离为的球面距离都为,求三点所在的圆面与球心的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,,底面是菱形,且的中点.
(1)求四棱锥的体积;
(2)证明:平面
(3)侧棱上是否存在点,使得平面?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间中,下列命题正确的是( )
A.两组对边分别相等的四边形是平面图形B.四条边都相等的四边形是平面图形
C.一组对边平行的四边形是平面图形D.对角相等的四边形是平面图形

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

ABCDCDEF是两个全等的正方形,且两个正方形所在平面互相垂直,MBC的中点,则异面直线AMDF所成角的正切值为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若m、n是空间两条不同直线,为三个互不重合的平面,对于下列命题:
          ②
                     ④若m、n与所成的角相等,则m//n
其中正确命题的个数为                                                                                   (   )
A.0                        B.1                       C.2                        D.4

查看答案和解析>>

同步练习册答案