精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: 的短轴长为2,离心率为 ,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记 ,若直线l的斜率k≥ ,则λ的取值范围为

【答案】
【解析】解:∵椭圆C: 的短轴长为2,离心率为 , ∴ ,解得a= ,b=c=1,
∴椭圆C:
∵过右焦点的直线l与椭圆C交于不同的两点A,B,
∴设直线l的方程为y=k(x﹣1),
联立 ,得(2k2+1)x2﹣4k2x+2k2﹣2=0,
设A(x1 , y1),B(x2 , y2),y1>y2
,x1x2=
=
=
=
=
=
=
∵k
∴当k= 时,λmax= =
当k→+∞时,λmin
∴λ的取值范围是
所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足an+1>an , a1=1,且该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(1)求数列{an},{bn}的通项公式;
(2)令cn=anbn , 求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数g(x)=3x , h(x)=9x
(1)解方程:h(x)﹣8g(x)﹣h(1)=0;
(2)令p(x)= ,求值:p( )+p( )+…+p( )+p( ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解高一学生周末的“阅读时间”,从高一年级中随机抽取了名学生进行调査,获得了每人的周末“阅读时间”(单位:小时),按照分成组,制成样本的频率分布直方图如图所示:

(Ⅰ)求图中的值;

(Ⅱ)估计该校高一学生周末“阅读时间”的中位数;

(Ⅲ)用样本频率代替概率. 现从全校高一年级随机抽取名学生,其中有名学生“阅读时间”在小时内的概率为,其中.当取最大时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数中,是同一个函数的是(
A.
B.f(x)=2log2x,
C.f(x)=ln(x﹣1)﹣ln(x+1),
D.f(x)=lg(1﹣x)+lg(1+x),g(x)=lg(1﹣x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (x∈R),如图是函数f(x)在[0,+∞)上的图象,
(1)求a的值,并补充作出函数f(x)在(﹣∞,0)上的图象,说明作图的理由;
(2)根据图象指出(不必证明)函数的单调区间与值域;
(3)若方程f(x)=lnb恰有两个不等实根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=loga(x+1),(a>0,a≠1)的图象经过点(﹣ ,﹣2),图象上有三个点A,B,C,它们的横坐标依次为t﹣1,t,t+1,(t≥1),记三角形ABC的面积为S(t),

(1)求f(x)的表达式;
(2)求S(1);
(3)是否存在正整数m,使得对于一切不小于1的t,都有S(t)<m,若存在求的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数y=x3m9(m∈N*)的图象关于y轴对称,且在(0,+∞)上函数值随x增大而减小.
(1)求m的值;
(2)求满足(a+1) <(3﹣2a) 的a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ) 证明:PA⊥BD;
(Ⅱ) 设PD=AD=1,求直线PC与平面ABCD所成角的正切值.

查看答案和解析>>

同步练习册答案