精英家教网 > 高中数学 > 题目详情
已知点A,F分别是椭圆(θ为参数,a>b>0)的右顶点和左焦点,点B为椭圆的一个短轴端点,若·=0,则椭圆的离心率e为(    )

A.           B.            C.               D.

A

解析:如图,∵·=0,∴BF⊥BA,又BO⊥FA,

∴|BO|2=|FO|·|OA|,即b2=ac.

∴a2-c2=ac,e2+e-1=0.又0<e<1,

∴e=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•梅州一模)已知F1,F2分别是椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦点,其中F1也是抛物线C1:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
5
3

(1)求椭圆C1的方程;
(2)已知A(b,0),B(0,a),直线y=kx(k>0)与AB相交于点D,与椭圆C1相交于点E,F两点,求四边形AEBF面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年贵州省五校联盟高三第四次联考理科数学试卷(解析版) 题型:填空题

已知点和直线分别是椭圆的右焦点和右准线.过点作斜率为的直线,该直线与交于点,与椭圆的一个交点是,且.则椭圆的离心率         .

 

查看答案和解析>>

科目:高中数学 来源:梅州一模 题型:解答题

已知F1,F2分别是椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦点,其中F1也是抛物线C1:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
5
3

(1)求椭圆C1的方程;
(2)已知A(b,0),B(0,a),直线y=kx(k>0)与AB相交于点D,与椭圆C1相交于点E,F两点,求四边形AEBF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A,B分别是射线l1:y=x(x≥0),l2:y=-x(x≥0)上的动点,O为坐标原点,且△OAB的面积为定值2.

(1)求线段AB中点M的轨迹C的方程;

(2)过点N(0,2)作直线l,与曲线C交于不同的两点P,Q,与射线l1,l2分别交于点R,S,若点P,Q恰为线段RS的两个三等分点,求此时直线l的方程.

查看答案和解析>>

同步练习册答案