精英家教网 > 高中数学 > 题目详情

【题目】已知函数,若对任意的,都存在,使得,则实数的取值范围是______.

【答案】

【解析】

求出函数在区间上的值域为,由题意可知,由,可得出,由题意知,函数在区间上的值域包含,然后对三种情况分类讨论,求出函数在区间上的值域,可得出关于实数的不等式(组),解出即可.

由于函数上的减函数,则,即

所以,函数在区间上的值域为.

对于函数,内层函数为,外层函数为.

,得.

由题意可知,函数在区间上的值域包含.

函数的图象开口向上,对称轴为直线.

i)当时,函数在区间上单调递减,在区间上单调递增,则,即

此时,函数在区间上的值域为

由题意可得,解得,此时,

ii)当时,函数在区间上单调递减,在区间上单调递增,则,即

此时,函数在区间上的值域为

由题意可得,解得,此时

iii)当时,函数在区间上单调递减,则,则函数在区间上的值域为

由题意可得,解得,此时,.

综上所述,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在.

(1)求角的大小

(2)设数列满足项和为的值.

【答案】(1);(2).

【解析】试题分析:

(1)由题意结合三角形内角和为可得.由余弦定理可得,,结合勾股定理可知为直角三角形,.

(2)结合(1)中的结论可得 . 据此可得关于实数k的方程解方程可得.

试题解析:

(1)由已知,又,所以.又由

所以,所以

所以为直角三角形,.

(2) .

所以 ,得

,所以,所以,所以.

型】解答
束】
18

【题目】已知点是平行四边形所在平面外一点如果.(1)求证:是平面的法向量

(2)求平行四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知函数.

时,证明:

,若,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若的零点为2,求

2)若上单调递减,求的最小值;

3)若对于任意的都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形 中, 上的点, 的中点,将 沿 折起到 的位置,使得 ,如图2.

(1)求证:平面平面

(2)求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过圆 上的点 轴的垂线,垂足为 ,点 满足 .当 上运动时,记点 的轨迹为 .

(1)求 的方程;

(2)过点 的直线交于 两点,与圆 交于 两点,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家为了了解一款产品的质量,随机抽取200名男性使用者和100名女性使用者,对该款产品进行评分,绘制出如下频率分布直方图.

(1)利用组中值(数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均数),估计100名女性使用者评分的平均值;

(2)根据评分的不同,运用分层抽样从这200名男性中抽取20名,在这20名中,从评分不低于80分的人中任意抽取3名,求这3名男性中恰有一名评分在区间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的程序框图中,若输入,则输出的值是( )

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/21/1907086498037760/1907898837975040/STEM/25d20caaa911497ea3baaf4f7dee45a3.png]

A. 3 B. 7 C. 11 D. 33

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是菱形,是矩形,平面平面的中点.

(1)求证:∥平面

(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案