ÒÑÖªº¯Êý£¬£¨£©£¬

£¨1£©ÈôÇúÏßÓëÇúÏßÔÚËüÃǵĽ»µã£¨1£¬c£©´¦¾ßÓй«¹²ÇÐÏߣ¬Çóa,bµÄÖµ

£¨2£©µ±Ê±£¬Èôº¯ÊýÔÚÇø¼ä[k,2]ÉϵÄ×î´óֵΪ28£¬ÇókµÄÈ¡Öµ·¶Î§

¡¾½âÎö¡¿£¨1£©£¬ 

¡ßÇúÏßÓëÇúÏßÔÚËüÃǵĽ»µã£¨1£¬c£©´¦¾ßÓй«¹²ÇÐÏß

¡à£¬

¡à

£¨2£©µ±Ê±£¬£¬£¬

ÁÔò£¬Á¡àΪµ¥µ÷µÝÔöÇø¼ä£¬Îªµ¥µ÷µÝ¼õÇø¼ä£¬ÆäÖÐF£¨-3£©=28Ϊ¼«´óÖµ£¬ËùÒÔÈç¹ûÇø¼ä[k,2]×î´óֵΪ28£¬¼´Çø¼ä°üº¬¼«´óÖµµã£¬ËùÒÔ

¡¾¿¼µã¶¨Î»¡¿´ËÌâÓ¦¸Ã˵Êǵ¼ÊýÌâÄ¿ÖнÏΪ³£¹æµÄÀàÐÍÌâÄ¿£¬¿¼²éµÄÇÐÏߣ¬µ¥µ÷ÐÔ£¬¼«ÖµÒÔ¼°×îÖµÎÊÌⶼÊǿα¾ÖÐÒªÇóµÄÖصãÄÚÈÝ£¬Ò²ÊÇѧÉúÕÆÎձȽϺõÄ֪ʶµã£¬ÔÚÌâÄ¿ÖÐÄܹ»·¢ÏÖF£¨-3£©=28£¬ºÍ·ÖÎö³öÇø¼ä[k,2]°üº¬¼«´óÖµµã£¬±È½ÏÖØÒª

 

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=ax3+bx2-2x+cÔÚx=-2ʱÓм«´óÖµ6£¬ÔÚx=1ʱÓм«Ð¡Öµ£¬
£¨1£©Çóa£¬b£¬cµÄÖµ£»
£¨2£©Çóf£¨x£©ÔÚÇø¼ä[-3£¬3]ÉϵÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=2
3
a•sinx•cosx•cos2x-6cos22x+3
£¬ÇÒf(
¦Ð
24
)=0
£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄÖÜÆÚTºÍµ¥µ÷µÝÔöÇø¼ä£»
£¨¢ò£©Èôf£¨¦È£©=-3£¬ÇҦȡÊ(-
5¦Ð
24
£¬
¦Ð
24
)
£¬Çó¦ÈµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýy=asinx+bcosx+cµÄͼÏóÉÏÓÐÒ»¸ö×îµÍµã(
11¦Ð
6
£¬-1)
£®
£¨¢ñ£©Èç¹ûx=0ʱ£¬y=-
3
2
£¬Çóa£¬b£¬c£®
£¨¢ò£©Èç¹û½«Í¼ÏóÉÏÿ¸öµãµÄ×Ý×ø±ê²»±ä£¬ºá×ø±êËõСµ½Ô­À´µÄ
3
¦Ð
£¬È»ºó½«ËùµÃͼÏóÏò×óƽÒÆÒ»¸öµ¥Î»µÃµ½y=f£¨x£©µÄͼÏ󣬲¢ÇÒ·½³Ìf£¨x£©=3µÄËùÓÐÕý¸ùÒÀ´Î³ÉΪһ¸ö¹«²îΪ3µÄµÈ²îÊýÁУ¬Çóy=f£¨x£©µÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x2-4£¬ÉèÇúÏßy=f£¨x£©Ôڵ㣨xn£¬f£¨xn£©£©´¦µÄÇÐÏßÓëxÖáµÄ½»µãΪ£¨xn+1£¬0£©£¨n¡ÊN*£©£¬ÆäÖÐx1ΪÕýʵÊý£®
£¨¢ñ£©ÓÃxn±íʾxn+1£»
£¨¢ò£©Èôx1=4£¬¼Çan=lg
xn+2xn-2
£¬Ö¤Ã÷ÊýÁÐ{an}³ÉµÈ±ÈÊýÁУ¬²¢ÇóÊýÁÐ{xn}µÄͨÏʽ£»
£¨¢ó£©Èôx1=4£¬bn=xn-2£¬TnÊÇÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬Ö¤Ã÷Tn£¼3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖªº¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼
¦Ð
2
£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬Ôòº¯Êýf£¨x£©µÄ½âÎöʽΪ£¨¡¡¡¡£©
A¡¢f(x)=2sin(
1
2
x+
¦Ð
6
)
B¡¢f(x)=2sin(
1
2
x-
¦Ð
6
)
C¡¢f(x)=2sin(2x-
¦Ð
6
)
D¡¢f(x)=2sin(2x+
¦Ð
6
)

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸