精英家教网 > 高中数学 > 题目详情
已知O,A,B是平面上的三点,向量
OA
=
a
.
OB
=
b
,点C是线段AB的中点,设P为线段AB的垂直平分线CP上任意一点,向量
OP
=
P
,若|
a
|=4,|
b
|=2
,则
p
•(
a
-
b
)
=
6
6
分析:利用线段垂直平方线上的点到线段两个端点的距离相等得到|
BP
|=|
AP
|;利用向量的运算法则将此等式用
a
b
p
 表示;将等式平方,求出值.
解答:解:由于P为线段AB的垂直平分线CP上任意一点,可得|
AP
|=|
BP
|,即|
p
-
a
|=|
p
-
b
|,
平方可得
p
2
-2
a
p
+
a
2
=
p
2
-2
p
b
+
b
2

化简可得 2
p
a
-2
p
b
=
a
2
-
b
2
=16-4=12,故有
p
•(
a
-
b
)=6,
故答案为 6.
点评:本题考查线段垂直平方线的性质、向量的运算法则、向量模的平方等于向量的平方,关于向量的基础知识要牢记,以免出现错误,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O,A,B是平面上的三个点,直线AB上有一点C,满足2
AC
+
CB
=0
,则
OC
等于(  )
A、2
OA
-
OB
B、-
OA
+2
OB
C、
2
3
OA
-
1
3
OB
D、-
1
3
OA
+
2
3
OB

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O、A、B是平面上的三点,向量
O
A=
a
O
B=
b
,在平面AOB上,P为线段AB的垂直平分线上任一点,向量
OP
=
p
且|
a
|=3, |
b
|=2,则
p
•(
a
-
b
)
值是(  )
A、
5
2
B、5
C、3
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O,A,B是平面上的三个点,直线AB上有一点C,满足2
AC
+
CB
=
0
,则
OC
=
2
OA
-
OB
2
OA
-
OB
(要求用
OA
OB
表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O、A、B是平面上三点,直线AB上有一点C满足3
AC
+2
CB
=
0
,则
OC
等于
(  )

查看答案和解析>>

同步练习册答案