精英家教网 > 高中数学 > 题目详情

设椭圆的方程为,过右焦点且不与轴垂直的直线与椭圆交于两点,若在椭圆的右准线上存在点,使为正三角形,则椭圆的离心率的取值范围是      

 

【答案】

【解析】解:设弦PQ的中点为M,过点P、M、Q分别作准线l的垂线,垂足为P'、M'、Q'

则|MM'|=(|PP'|+|QQ'|)=(|PF|+|QF|)= |PQ|

假设存在点R,使△PQR为正三角形,则由|RM|=  |PQ|,且|MM'|<|RM|

得: |PQ|<  |PQ|

∴e>

∴椭圆离心率e的取值范围是

故答案为:

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上的动点Q,过动点Q作椭圆的切线l,过右焦点作l的垂线,垂足为P,则点P的轨迹方程为(  )
A、x2+y2=a2
B、x2+y2=b2
C、x2+y2=c2
D、x2+y2=e2

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省聊城市高三上学期期末考试数学 题型:解答题

( 12分)如图,椭圆的方程为,其右焦点为F,把椭圆的长轴分成6等分,过每个等分点作x轴的垂线交椭圆上半部于点P1,P2,P3,P4,P5五个点,且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5.

 

 

(1)求椭圆的方程;

(2)设直线lF点(l不垂直坐标轴),且与椭圆交于A、B两点,线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围.

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的方程为数学公式,其右焦点为F,把椭圆的长轴分成6等分,过每个等分点作x轴的垂线交椭圆上半部于点P1,P2,P3,P4,P5五个点,且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5数学公式
(1)求椭圆的方程;
(2)设直线l过F点(l不垂直坐标轴),且与椭圆交于A、B两点,线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省聊城市五校联考高三(上)期末数学试卷(解析版) 题型:解答题

如图,椭圆的方程为,其右焦点为F,把椭圆的长轴分成6等分,过每个等分点作x轴的垂线交椭圆上半部于点P1,P2,P3,P4,P5五个点,且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5
(1)求椭圆的方程;
(2)设直线l过F点(l不垂直坐标轴),且与椭圆交于A、B两点,线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围.

查看答案和解析>>

同步练习册答案