精英家教网 > 高中数学 > 题目详情

【题目】已知动圆M恒过点(0,1),且与直线y=﹣1相切.
(1)求圆心M的轨迹方程;
(2)动直线l过点P(0,﹣2),且与点M的轨迹交于A、B两点,点C与点B关于y轴对称,求证:直线AC恒过定点.

【答案】
(1)解:∵动点M到直线y=﹣1的距离等于到定点C(0,1)的距离,

∴动点M的轨迹为抛物线,且 =1,解得:p=2,

∴动点M的轨迹方程为x2=4y


(2)解:证明:由题意可知直线l的斜率存在,

设直线l的方程为:y=kx﹣2,A(x1,y1),B(x2,y2),则C(﹣x2,y2).

联立 ,化为x2﹣4kx+8=0,

△=16k2﹣32>0,

解得k> 或k<﹣

∴x1+x2=4k,x1x2=8.

直线直线AC的方程为:y﹣y2=﹣ (x+x2),

又∵y1=kx1﹣2,y2=kx2﹣2,

∴4ky﹣4k(kx2﹣2)=(kx2﹣kx1)x+kx1x2﹣kx22

化为4y=(x2﹣x1)x+x2(4k﹣x2),

∵x1=4k﹣x2

∴4y=(x2﹣x1)x+8,

令x=0,则y=2,

∴直线AC恒过一定点(0,2)


【解析】(1)由题意可知圆心M的轨迹为以(0,1)为焦点,直线y=﹣1为准线的抛物线,根据抛物线的方程即可求得圆心M的轨迹方程;(2)由题意可知直线l的斜率存在,设直线l的方程为:y=kx﹣2,A(x1,y1),B(x2,y2),则C(﹣x2,y2).代入抛物线方,由韦达定理及直线直线AC的方程为:y﹣y2=﹣ (x+x2),把根与系数的关系代入可得4y=(x2﹣x1)x+8,令x=0,即可得出直线恒过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是(
A.x∈R,f(x)≤f(x0
B.x∈R,f(x)≥f(x0
C.x∈R,f(x)≤f(x0
D.x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数.

(1)若函数的最小值为-16,求实数的值;

(2)若函数在区间上是单调减函数,求实数的取值范围;

(3)当时,不等式的解集为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与圆

(1)若直线与圆相交于两个不同点,求的最小值;

(2)直线上是否存在点,满足经过点有无数对互相垂直的直线,它们分别与圆和圆相交,并且直线被圆所截得的弦长等于直线被圆所截得的弦长?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象向右平移两个单位,得到函数的图象.

(1)求函数的解析式;

(2)若方程上有且仅有一个实根,求的取值范围;

(3)若函数的图象关于直线对称,设,已知对任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.

(Ⅰ)求圆的方程;

(Ⅱ)设直线 与圆相交于两点,求实数的取值范围;

(Ⅲ) 在(Ⅱ)的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算:(1) ;

(2) .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的导函数为f'(x),且f'(x)<f(x)对任意的x∈R恒成立,则下列不等式均成立的是(
A.f(ln2)<2f(0),f(2)<e2f(0)
B.f(ln2)>2f(0),f(2)>e2f(0)
C.f(ln2)<2f(0),f(2)>e2f(0)
D.f(ln2)>2f(0),f(2)<e2f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数y=2sin(3x+φ)的图象向右平移 个单位后得到的图象关于点( )对称,则|φ|的最小值是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案