已知函数.
(1)求函数的单调区间;
(2)证明:对任意的,存在唯一的,使;
(3)设(2)中所确定的关于的函数为,证明:当时,有.
(1)减区间是,增区间是;(2)详见解析;(3)详见解析.
【解析】
试题分析:(1)先确定函数的定义域,然后利用导数求出函数的单调区间;(2)构造函数
,利用函数的单调性与零点存在定理来证明题中结论;(3)根据(2)中的结论得到
,利用换元法令得到,于是将问题转化为且,构造新函数,利用导数来证明在区间上恒成立即可.
试题解析:(1)函数的定义域为,
,令,得,
当变化时,,的变化情况如下表:
极小值 |
所以函数的单调递减区间是,单调递增区间是;
(2)当时,.设,令,,
由(1)知在区间内单调递增,
,,
故存在唯一的,使得成立;
(3),由(2)知,,且,
,
其中,,要使成立,只需且,
当时,若,则由的单调性,有,矛盾,
所以,即,从而成立.
又设,则,
所以在内是增函数,在内为减函数,
在上的最大值为
成立,
当时,成立.
考点:1.函数的单调性与导数;2.零点存在定理;3.利用导数证明函数不等式
科目:高中数学 来源:2013-2014学年广东省韶关市高三4月高考模拟(二模)理科数学试卷(解析版) 题型:选择题
给出如下四个判断:
①;
②;
③设集合,,则“”是“”的必要不充分条件;
④ ,为单位向量,其夹角为,若,则.
其中正确的判断个数是:( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中数学 来源:2013-2014学年广东省肇庆市高三3月第一次模拟理科数学试卷(解析版) 题型:选择题
设向量,,定义一种向量积:.已知向量,,点P在的图象上运动,点Q在的图象上运动,且满足(其中O为坐标原点),则在区间上的最大值是( )
A.4 B.2 C. D.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年广东省肇庆市高三3月第一次模拟文科数学试卷(解析版) 题型:选择题
执行如图所示的程序框图,若输入的值为4,则输出的值是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年广东省湛江市高三高考模拟测试二文科数学试卷(解析版) 题型:填空题
在长为的线段上任取一点,现作一矩形,邻边长分别等于线段,的长,则该矩形面积大于的概率为 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年广东省梅州市高三3月总复习质检理科数学试卷(解析版) 题型:填空题
(坐标系与参数方程选讲选做题)在平面直角坐标系下xoy中,直线l的参数方程是(参数tR).圆的参数方程为(参数),则圆C的圆心到直线l的距离为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com