精英家教网 > 高中数学 > 题目详情
5.已知a、b、c表示不同的直线,α、β、γ表示不同的平面,则下列判断正确的是(  )
A.若a⊥c,b⊥c,则a∥bB.若α⊥γ,β⊥γ,则α∥βC.若α⊥a,β⊥a,则α∥βD.若a⊥α,b⊥a,则b∥α

分析 在A中,a与b相交、平行或异面;在B中,α与β相交或平行;在C中,由平面与平面平行的判定定理得α∥β;在D中,b∥α或b?α.

解答 解:由a、b、c表示不同的直线,α、β、γ表示不同的平面,知:
在A中:若a⊥c,b⊥c,则a与b相交、平行或异面,故A错误;
在B中:若α⊥γ,β⊥γ,则α与β相交或平行,故B错误;
在C中,若α⊥a,β⊥a,则由平面与平面平行的判定定理得α∥β,故C正确;
在D中,若a⊥α,b⊥a,则b∥α或b?α,故D错误.
故选:D.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.$\frac{{2{{sin}^2}55°-1}}{sin20°}$的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若点 P(1,2),A(x1,y1),B(x2,y2)是抛物线y2=2px(p>0)上的不同的三个点,直线AP,BP的斜率分别是k1,k2,若k1+k2=0.
(1)求抛物线的方程;
(2)求y1+y2的值及直线AB的斜率k.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.2015年春,某地干旱少雨,农作物受灾严重,为了使今后保证农田灌溉,当地政府决定建一横断面为等腰梯形的水渠(水渠的横断面如图所示),为减少水的流失量,必须减少水与渠壁的接触面,若水渠横断面的面积设计为定值S,渠深为h,则水渠壁的倾斜角α(0<α<$\frac{π}{2}$)为多大时,水渠中水的流失量最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.判断下列各对直线的位置关系,如果相交,求出交点坐标:
(1)l1:2x-y+7=0,l2:x+y=1;
(2)${l_1}:x-3y-10=0,\;\;{l_2}:y=\frac{x+5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个长方体的长宽高分别为2cm,2cm,$2\sqrt{2}$cm,它的顶点都在球面上,则球的体积是$\frac{32π}{3}$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数中,既是奇函数又存在零点的函数是(  )
A.y=sinxB.y=cosxC.y=lnxD.y=x3+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.哈尔滨市投资修建冰雪大世界,为了调查此次修建冰雪大世界能否收回成本,组委会成立了一个调查小组对国内参观冰雪大世界的游客的消费指数(单位:百元)进行调查,在调查的1000位游客中有100位哈尔滨本地游客,把哈尔滨本地游客记为A组,内外地游客记为B组,按分层抽样从这1000人中抽取A,B组人数如下表:
A组:
消费指数(百元)[1,2)[2,3)[3,4)[4,5)[5,6)
人数34652
B组:
消费指数(百元)[3,4)[4,5)[5,6)[6,7)[7,8]
人数936a549
(1)确定a的值,再分别在答题纸上完成A组与B组的频率分布直方图;
(2)分别估计A,B两组游客消费指数的平均数,并估计被调查的1000名游客消费指数的平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知实数a,b满足2a2-5lna-b=0,c∈R,则$\sqrt{(a-c)^{2}+(b+c)^{2}}$的最小值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{3\sqrt{2}}{2}$D.$\frac{9}{2}$

查看答案和解析>>

同步练习册答案