精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}中,a1=1,a3=9,且an=an1+λn﹣1(n≥2).
(1)求λ的值及数列{an}的通项公式;
(2)设 ,且数列{bn}的前n项和为Sn , 求S2n

【答案】
(1)解:∵a1=1,a3=9,且an=an1+λn﹣1(n≥2),∴a2=2λ,a3=5λ﹣1=9,解得λ=2.

∴an﹣an1=2n﹣1(n≥2).

∴an=(2n﹣1)+(2n﹣3)+…+3+1= =n2


(2)解: =(﹣1)n(n2+n),

b2n1+b2n=﹣[(2n﹣1)2+(2n﹣1)]+[(2n)2+2n]=4n.

S2n=4× =2n2+2n


【解析】(I)a1=1,a3=9,且an=an1+λn﹣1(n≥2),可得a2=2λ,a3=5λ﹣1=9,解得λ.可得an﹣an1=2n﹣1(n≥2).利用“累加求和”方法即可得出.(II) =(﹣1)n(n2+n),可得b2n1+b2n=﹣[(2n﹣1)2+(2n﹣1)]+[(2n)2+2n]=4n.即可得出S2n

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2017年,在国家创新驱动战略下,北斗系统作为一项国家高科技工程,一个开放型的创新平台,1400多个北斗基站遍布全国,上万台设备组成星地“一张网”,国内定位精度全部达到亚米级,部分地区达到分米级,最高精度甚至可以达到厘米或毫米级。最近北斗三号工程耗资元建成一大型设备,已知这台设备维修和消耗费用第一年为元,以后每年增加元(是常数),用表示设备使用的年数,记设备年平均维修和消耗费用为,即 (设备单价设备维修和消耗费用)设备使用的年数.

(1)求关于的函数关系式;

(2)当时,求这种设备的最佳更新年限.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线C1 t为参数),C2 (θ为参数),
(Ⅰ)当α= 时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】所对的边分别为 (其中).

(1)若时,判断为的形状

(2)若,且的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和满足 .

(1)求数列的通项公式

(2)若数列满足

(I)求数列的前项和

(II)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆

(1)直线过点,被圆截得的弦长为,求直线的方程;

(2)直线的的斜率为1,且被圆截得弦,若以为直径的圆过原点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a为实数,函数f(x)=x3﹣x2﹣x+a , 若函数f(x)过点A(1,0),求函数在区间[﹣1,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如表.

非一线

一线

总计

愿生

45

20

65

不愿生

13

22

35

总计

58

42

100

附表:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

由K2= 算得,K2= ≈9.616参照附表,得到的正确结论是(
A.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”
C.有99%以上的把握认为“生育意愿与城市级别有关”
D.有99%以上的把握认为“生育意愿与城市级别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线 (a>0,b>0)的左焦点为F1 , 左顶点为A,过F1作x轴的垂线交双曲线于P、Q两点,过P作PM垂直QA于M,过Q作QN垂直PA于N,设PM与QN的交点为B,若B到直线PQ的距离大于a+ ,则该双曲线的离心率取值范围是(
A.(1﹣
B.( ,+∞)
C.(1,2
D.(2 ,+∞)

查看答案和解析>>

同步练习册答案