精英家教网 > 高中数学 > 题目详情

某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(Ⅰ)求出f(5);
(Ⅱ)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式.

解:(Ⅰ)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,
∴f(2)-f(1)=4=4×1.
f(3)-f(2)=8=4×2,
f(4)-f(3)=12=4×3,
f(5)-f(4)=16=4×4
∴f(5)=25+4×4=41.…(4分)
(Ⅱ)由上式规律得出f(n+1)-f(n)=4n.…(8分)
∴f(2)-f(1)=4×1,
f(3)-f(2)=4×2,
f(4)-f(3)=4×3,

f(n-1)-f(n-2)=4•(n-2),
f(n)-f(n-1)=4•(n-1)…(10分)
∴f(n)-f(1)=4[1+2+…+(n-2)+(n-1)]=2(n-1)•n,
∴f(n)=2n2-2n+1.…(12分)
分析:(I)先分别观察给出正方体的个数为:1,1+4,1+4+8,…从而得出f(5);
(II)将(I)总结一般性的规律:f(n+1)与f(n)的关系式,再从总结出来的一般性的规律转化为特殊的数列再求解即得.
点评:本题主要考查归纳推理,其基本思路是先分析具体,观察,总结其内在联系,得到一般性的结论,若求解的项数较少,可一直推理出结果,若项数较多,则要得到一般求解方法,再求具体问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮;现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.则f(n)的表达式为
f(n)=2n2-2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

14、某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形,则f(6)=
61

查看答案和解析>>

科目:高中数学 来源: 题型:

某少数民族的刺绣有着悠久的历史,右图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(1)求出f(5);
(2)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式;
(3)求
1
f(1)
+
1
f(2)-1
+
1
f(3)-1
+…+
1
f(n)-1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(Ⅰ)求出f(5);
(Ⅱ)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三高考压轴考试文科数学试卷(解析版) 题型:填空题

某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮;现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形,则  

 

查看答案和解析>>

同步练习册答案