精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中平面平面.

(Ⅰ)证明:

(Ⅱ)若点E中点,,求平面与平面所成锐二面角的余弦值.

【答案】(Ⅰ)证明见解析,(Ⅱ)

【解析】

1)过B于点D,则平面,可得,又,则平面,即可得证.

2)以为坐标原点,过作垂直的直线为轴,轴正向,轴建立如图所以空间直角坐标系,分别求出平面、平面的法向量,利用空间向量法求出二面角的余弦值.

证明:(1)过B于点D

平面平面,且平面平面

平面.

平面

.

平面平面

所以平面.

2)由(1)有平面,故以为坐标原点,过作垂直的直线为轴,轴正向,轴建立如图所以空间直角坐标系

设平面的法向量

,故

同理可得平面的法向量

,又平面与平面所成角为锐角,

所以平面与平面所成角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数yH(x),若在其定义域内存在x0使得x0·H(x0)=1成立则称x0为函数H(x)倒数点.已知函数f(x)=ln xg(x)=(x+1)2-1.

(1)求证:函数f(x)倒数点”,并讨论函数f(x)倒数点的个数;

(2)若当x≥1不等式xf(x)≤m[g(x)-x]恒成立试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,若椭圆上的点与两个焦点构成的三角形中,面积最大为1.

1)求椭圆的标准方程;

2)设直线与椭圆的交于两点,为坐标原点,且,证明:直线与圆相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,D02)为椭圆C短轴的一个端点,F为椭圆C的右焦点,线段DF的延长线与椭圆C相交于点E,且|DF|=3|EF|

1)求椭圆C的标准方程;

2)设直线l与椭圆C相交于AB两点,O为坐标原点,若直线OAOB的斜率之积为-,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为2的正方体中,点是正方体棱上一点,.

①若,则满足条件的点的个数为______

②若满足的点的个数为6,则的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《郑州市城市生活垃圾分类管理办法》已经政府常务会议审议通过,自2019121日起施行.垃圾分类是对垃圾收集处置传统方式的改革,是对垃圾进行有效处置的一种科学管理方法.所谓垃圾其实都是资源,当你放错了位置时它才是垃圾.某企业在市科研部门的支持下进行研究,把厨余垃圾加工处理为一种可销售的产品.已知该企业每周的加工处理量最少为75吨,最多为100吨.周加工处理成本y(元)与周加工处理量x(吨)之间的函数关系可近似地表示为,且每加工处理一吨厨余垃圾得到的产品售价为16元.

(Ⅰ)该企业每周加工处理量为多少吨时,才能使每吨产品的平均加工处理成本最低?

(Ⅱ)该企业每周能否获利?如果获利,求出利润的最大值;如果不获利,则需要市政府至少补贴多少元才能使该企业不亏损?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某射手每次射击击中目标的概率是,且各次射击的结果互不影响.

(Ⅰ)假设这名射手射击次,求有次连续击中目标,另外次未击中目标的概率;

(Ⅱ)假设这名射手射击次,记随机变量为射手击中目标的次数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线为参数),.以原点为极点,轴的非负半轴为极轴建立极坐标系.

(I)写出曲线与圆的极坐标方程;

(II)在极坐标系中,已知射线分别与曲线及圆相交于,当时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:

空调类

冰箱类

小家电类

其它类

营业收入占比

净利润占比

则下列判断中不正确的是( )

A. 该公司2018年度冰箱类电器营销亏损

B. 该公司2018年度小家电类电器营业收入和净利润相同

C. 该公司2018年度净利润主要由空调类电器销售提供

D. 剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低

查看答案和解析>>

同步练习册答案