精英家教网 > 高中数学 > 题目详情
若∠AOB=∠A1O1B1且OA∥O1A1,OA与O1A1的方向相同,则下列结论中正确的是(  )
A、OB∥O1B1且方向相同
B、OB∥O1B1
C、OB与O1B1不平行
D、OB与O1B1不一定平行
考点:空间中直线与直线之间的位置关系
专题:计算题,空间位置关系与距离
分析:画出图形,当满足题目中的条件时,出现的情况有哪些,即可得出结论.
解答: 解:如图,
当∠AOB=∠A1O1B1时,且OA∥O1A1,OA与O1A1的方向相同,
OB与O1B1是不一定平行.如图1、2.
故选:D
点评:本题考查了当两个角相等时,它的两条对应边的平行关系,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一曲线是与两个定点O(0,0),A(a,0)(a≠0)的距离的比为k的点的轨迹,求此曲线的方程,并判断曲线的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-3,x≥10
f[f(x+5)],x<10
,其中x∈N,则f(8)=(  )
A、2B、4C、6D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,底面ABCD为菱形的直四棱柱ABCD-A1B1C1D1,所有棱长都为2,∠BAD=60°,E为BB1的延长线上一点,D1E⊥面D1AC.
(1)求线段B1E的长度及三棱锥E-D1AC的体积V E-D1AC
(2)设AC和BD交于点O,在线段D1E上是否存在一点P,使EO∥面A1C1P?若存在,求D1P:PE的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=xlnx,g(x)=-x2+ax-3.对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,AD是直角△ABC斜边上的高,沿AD把△ABC的两部分折成直二面角(如图2),DF⊥AC于F.
(Ⅰ)证明:BF⊥AC;
(Ⅱ)设∠DCF=θ,AB与平面BDF所成的角为α,二面角B-FA-D的大小为β,试用tanθ,cosβ表示tanα;
(Ⅲ)设AB=AC,E为AB的中点,在线段DC上是否存在一点P,使得DE∥平面PBF?若存在,求
DP
PC
的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于直线m,n和平面α,β,有如下四个命题:
(1)若m∥α,n∥β,α∥β,则m∥n;
(2)若m∥n,n?α,n⊥β,则α⊥β;
(3)若α∩β=m,m∥n,则n∥α且n∥β;
(4)若m⊥n,α∩β=m,则n⊥α或n⊥β.
其中真命题的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
4
-y2=1的左右焦点为F1、F2,点P为左支上一点,且满足∠F1PF2=60°,则△F1PF2的面积为(  )
A、
3
B、
3
3
C、
3
2
D、D、2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是根据部分城市某年9月份的平均气温(单位:℃) 数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11.
(1)求抽取的样本个数和样本数据的众数;
(2)若用分层抽样的方法在数据组[21.5,22.5)和[25.5,26.5]中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2个城市,求恰好抽到2个城市在同一组中的概率.

查看答案和解析>>

同步练习册答案