【题目】已知函数(其中为常数且)
(1)若函数为减函数,求实数的取值范围;
(2)若函数有两个不同的零点,求实数的取值范围,并说明理由.
【答案】(1);(2).
【解析】
(1)求出函数为减函数,等价于,即对恒成立,求出的最小值即可得结果;(2)设,则原命题等价于函数有两个不同的零点,分类讨论的范围,分别利用导数研究函数的单调性,结合函数图象与零点存在定理,可筛选出符合题意的实数的取值范围.
(1)
若函数为减函数,则,即对恒成立.
设 在区间上递减递增
即故实数的取值范围是
(2)易知函数的定义域为
设,则原命题等价于函数有两个不同的零点,求实数的取值范围,
当时,函数在区间上递减上递增,若函数有两个不同的零点则必有即此时,在上有
在上,
在区间上各有一个零点,故合题意;
当时,函数在区间递减,函数至多一个零点,不合题意;
当时,函数在区间递减、递增、递减,
函数的极小值为函数至多一个零点,不合题意;
当时,函数在区间递减、递增、递减,
函数的极小值为 ,
函数至多一个零点,不合题意.
综上所述,实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】如图,在平行四边形中,点,,,对角线,交于点P.
(1)求直线的方程;
(2)若点E,F分别在平行四边形的边和上运动,且,求的取值范围;
(3)试写出三角形区域(包括边界)所满足的线性约束条件,若在该区域上任取一点M,使,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某年数学竞赛邀请了一位来自星球的选手参加填空题比赛,共10道题目,这位选手做题有一个古怪的习惯:先从最后一题(第10题)开始往前看,凡是遇到会的题目就作答,遇到不会的题目先跳过(允许跳过所有的题目),一直看到第1题,然后从第1题开始往后看,凡是遇到先前未答的题目就随便写个答案,遇到先前已答得题目则跳过(例如,他可以按照9、8、7、4、3、2、1、5、6、10的次序答题),这样所有题目均有作答,则这位选手可能的答题次序有______种.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:
品牌 | 甲 | 乙 | |||
首次出现故 障时间x(年) | 0<x≤1 | 1<x≤2 | x>2 | 0<x≤2 | x>2 |
轿车数量(辆) | 2 | 3 | 45 | 5 | 45 |
每辆利润 (万元) | 1 | 2 | 3 | 1.8 | 2.9 |
将频率视为概率,解答下列问题:
(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率.
(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列.
(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,四边形ABCD是直角梯形,,,,M是棱PC上一点,且,平面MBD.
(1)求实数λ的值;
(2)若平面平面ABCD,为等边三角形,且三棱锥P-MBD的体积为2,求PA的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆为其左右焦点,为其上下顶点,四边形的面积为.点为椭圆上任意一点,以为圆心的圆(记为圆)总经过坐标原点.
(1)求椭圆的长轴的最小值,并确定此时椭圆的方程;
(2)对于(1)中确定的椭圆,若给定圆,则圆和圆的公共弦的长是否为定值?如果是,求的值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一个数列的各项是1和2,首项是1,且在第个1和第个1之间有个2,即1,2,1,2,2,1,2,2,2,2,1,2,2,2,2,2,2,2,2,1…,则此数列的前2017项的和______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班对一次实验成绩进行分析,利用随机数表法抽取样本时,先将50个同学按01,02.03,…50进行编号,然后从随机数表第9行第11列的数开始向右读,则选出的第6个个体是( )(注:表为随机数表的第8行和第9行)
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
A.00B.13C.42D.44
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com