精英家教网 > 高中数学 > 题目详情

【题目】设等比数列的前项和为;数列满足.

1)求数列的通项公式;

2)①试确定的值,使得数列为等差数列;

②在①结论下,若对每个正整数,在之间插入个2,得到一个新数列,设是数列的前项和,试求满足的所有正整数.

【答案】(1);(2)见解析

【解析】分析:(1)求出数列的首项和公比,即可求数列的通项公式;(2)①求出数列的前几项,根据等差数列的性质建立方程即可求出②讨论的取值,根据的关系进行求解即可.

详解:(1)当时,

则公比,则

(2)①时,得 时,得时,得

则由,得

而当时,由

,知此时数列为等差数列.

由题意知,

则当时,,不合题意,舍去;

时,,所以成立;

时,若,则,不合题意,舍去;从而必是数列中的某一项

,所以

,所以

因为为奇数,而为偶数,所以上式无解.

即当时,

综上所述,满足题意的正整数仅有

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知随机变量 满足 .若 ,则( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种汽车购买时费用为16.9万元,每年应交付保险费、汽油费共0.9万元,汽车的维修保养费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,……依等差数列逐年递增.

(1)求该车使用了3年的总费用(包括购车费用)为多少万元?

(2)设该车使用年的总费用(包括购车费用)为),试写出的表达式;

(3)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中, 底面 是直角梯形, ,且 的中点.

(1)求证:平面 平面
(2)若二面角 的余弦值为 ,求直线 与平面 所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设M=( ﹣1)( ﹣1)( ﹣1)满足a+b+c=1(其中a>0,b>0,c>0),则M的取值范围是(
A.[0,
B.[ ,1)
C.[1,8)
D.[8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 ,命题 为假命题,则实数 的取值范围为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的方程的两根之和等于两根之积的一半,则一定是( )

A. 直角三角形 B. 等腰三角形 C. 钝角三角形 D. 等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个四棱锥的正视图和侧视图为两个完全相同的等腰直角三角形(如图示),腰长为1,则该四棱锥的体积为( )

(A) (B) (C) (D)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,设当箭头a指向①处时,输出的S的值为m,当箭头a指向②处时,输出的S的值为n,则m+n=

查看答案和解析>>

同步练习册答案