精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方体,点在线段上运动,则下列判断正确的是(

①平面平面

平面

③异面直线所成角的取值范围是

④三棱锥的体积不变

A.①②B.①②④C.③④D.①④

【答案】B

【解析】

由面面垂直的判定定理判断①,由面面平行的性质定理判断②,求出在特殊位置处时异面直线所成的角,判断③,由换底求体积法判断④.

正方体中易证直线平面,从而有,同理有,证得平面,由面面垂直判定定理得平面平面,①正确;

正方体中,从而可得线面平行,然后可得面面平行,即平面平面,而平面,从而得平面,②正确;

中点时,在平面内,正方体中仿照上面可证平面,从而所成角为.③错;

,由平面,知在线段上移动时,到平面距离相等,因此不变,④正确.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,折线图和条形图分别为某位职员2018年与2019年的家庭总收入各种用途所占比例的统计图,已知2018年的家庭总收入为10万元,2019年的储蓄总量比2018年的储蓄总量减少了10%,则下列说法:

2019年家庭总收入比2018年增长了8%

②年衣食住的总费用与2018年衣食住的总费相同;

2019年的旅行总费用比2018年增加了2800元;

2019年的就医总费用比2018年增长了5%

其中正确的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在定义域内有两个不同的极值点.

1)求实数的取值范围;

2)设两个极值点分别为证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】七巧板是一种古老的中国传统智力玩具,是由七块板组成.而这七块板可拼成许多图形,人物、动物、建筑物等,在18世纪,七巧板流传到了国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧图谱》.若用七巧板(图1为正方形),拼成一只雄鸡(图2),在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡头或鸡尾(阴影部分)的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,已知椭圆:的离心率为,且过点

1)求椭圆的方程;

2)设椭圆为椭圆上一点,过点的直线交椭圆两点,射线交椭圆于点Q

i)若为椭圆上任意一点,求的值;

ii)若点坐标为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点,动点在椭圆上,且使得的点恰有两个,动点到焦点的距离的最大值为.

(1)求椭圆的方程;

(2)如图,以椭圆的长轴为直径作圆,过直线上的动点作圆的两条切线,设切点分别为,若直线与椭圆交于不同的两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】七巧板是一种古老的中国传统智力玩具,是由七块板组成的.而这七块板可拼成许多图形,例如:三角形、不规则多边形、各种人物、动物、建筑物等,清陆以湉《冷庐杂识》写道:近又有七巧图,其式五,其数七,其变化之式多至千余.在18世纪,七巧板流传到了国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.若用七巧板拼成一只雄鸡,在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡尾(阴影部分)的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学参加诗词大赛,各答3道题,每人答对每道题的概率均为,且各人是否答对每道题互不影响.

)用表示甲同学答对题目的个数,求随机变量的分布列和数学期望;

)设为事件“甲比乙答对题目数恰好多2”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某多面体的三视图如图所示,则该多面体的各棱中,最长棱的长度为( )

A. B. C. 2 D. 1

查看答案和解析>>

同步练习册答案