精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知△ABC的两个顶点A,B的坐标分别为(﹣1,0),(1,0),且AC、BC所在直线的斜率之积等于﹣2,记顶点C的轨迹为曲线E.
(1)求曲线E的方程;
(2)设直线y=2x+m(m∈R且m≠0)与曲线E相交于P、Q两点,点M( ,1),求△MPQ面积的取值范围.

【答案】
(1)解:设C(x,y),由题意,可得 =﹣2(x≠±1),

∴曲线E的方程为 =1(x≠±1)


(2)解:设P(x1,y1),Q(x2,y2),

联立 ,消去y,得6x2+4mx+m2﹣2=0,

∵△=48﹣8m2>0,∴m2<6,

∵x≠±1,∴m≠±2,

又∵m≠0,∴0<m2<6,且m2≠4,

∴|PQ|= |x1﹣x2|=

=

=

点M( ,1)到PQ的距离d= =

∵0<m2<6,m2≠4,

=( 2= = m2m2(12﹣2m2

3= =

当且仅当m2=12﹣2m2时,取等号,又m2≠4,

∈(0, ).

∴△MPQ面积的取值范围是(0,


【解析】(1)设C(x,y),由题意,可得 =﹣2(x≠±1),由此能求出曲线E的方程.(2)设P(x1,y1),Q(x2,y2),联立 ,得6x2+4mx+m2﹣2=0,由此利用根的判别式、韦达定理、弦长公式、三角形面积公式,结合已知条件能求出△MPQ面积的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,Sn=2an+1 , 其中Sn为{an}的前n项和(n∈N*).
(Ⅰ)求S1 , S2及数列{Sn}的通项公式;
(Ⅱ)若数列{bn}满足 ,且{bn}的前n项和为Tn , 求证:当n≥2时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知中心在原点,焦点在x轴上的椭圆的一个焦点为( ,0),(1, )是椭圆上的一个点.
(1)求椭圆的标准方程;
(2)设椭圆的上、下顶点分别为A,B,P(x0 , y0)(x0≠0)是椭圆上异于A,B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ中点,直线AM交直线l:y=﹣1于点C,N为线段BC的中点,如果△MON的面积为 ,求y0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(﹣1,+∞)上的单调函数f(x),对于任意的x∈(﹣1,+∞),f[f(x)﹣xex]=0恒成立,则方程f(x)﹣f′(x)=x的解所在的区间是(
A.(﹣1,﹣
B.(0,
C.(﹣ ,0)
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x+ |+a|x﹣ |.
(Ⅰ)当a=﹣1时,解不等式f(x)≤3x;
(Ⅱ)当a=2时,若关于x的不等式2f(x)+1<|1﹣b|的解集为空集,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=sin(2x+φ)+b,对任意实数x都有f(x+ )=f(﹣x),f( )=﹣1,则实数b的值为(
A.﹣2或0
B.0或1
C.±1
D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点 ,且经过点 ,点M是x轴上的一点,过点M的直线l与椭圆C交于A,B两点(点A在x轴的上方)
(1)求椭圆C的方程;
(2)若|AM|=2|MB|,且直线l与圆 相切于点N,求|MN|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线yx﹣2与抛物线y2=2x交于AB两点,O为坐标原点,则过ABO三点的圆的方程为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=|x﹣1|+|x+1|,(x∈R)
(1)求证:f(x)≥2;
(2)若不等式f(x)≥ 对任意非零实数b恒成立,求x的取值范围.

查看答案和解析>>

同步练习册答案