精英家教网 > 高中数学 > 题目详情

如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,ACBD,垂足为H,PH是

四棱锥的高 ,E为AD中点;(Ⅰ)证明:PEBC;

(Ⅱ)若APB=ADB=60°,求直线PA与平面PEH所成角的正弦值。

 

【答案】

(1)略  (2)

【解析】求解和证明立体几何问题一方面可以直接利用几何方法,通过证明或找到线面之间的关系,依据判定定理或性质进行证明求解.

为原点, 分别为轴,线段的长为单位长, 建立空间直角坐标系如图, 则

(Ⅰ)设

则 

可得 

因为 所以  ……………………5分

(Ⅱ)由已知条件可得

为平面的法向量

则           即因此可以取

,可得 

所以直线与平面所成角的正弦值为…………………12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
求证:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求AP的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.
(1)求证:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)如图,已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,E、F分别是BC,PC的中点,AB=2,AP=2.
(1)求证:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)如图,已知四棱锥P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,点M,N分别在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求证:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步练习册答案