精英家教网 > 高中数学 > 题目详情

【题目】若以曲线上任意一点为切点作切线,曲线上总存在异于的点,以点为切点作切线,且,则称曲线具有“可平行性”,现有下列命题:

①函数的图象具有“可平行性”;

②定义在的奇函数的图象都具有“可平行性”;

③三次函数具有“可平行性”,且对应的两切点 的横坐标满足

④要使得分段函数的图象具有“可平行性”,当且仅当.

其中的真命题个数有()

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】由“可平行性”的定义,可得曲线y=f(x)具有“可平行性”,则方程y′=a(a是导数值)至少有两个根。

①函数y=(x2)2+lnx,y′=2(x2)+ = (x>0),方程,2x2(4+a)x+1=0,时有两个相等正根,不符合题意;

②定义在(∞,0)(0,+)的奇函数,y=x3, ,方程,时有两个相等实数根,不符合题意;

③三次函数f(x)=x3x2+ax+b,f′(x)=3x22x+a,满足题意时, 的一元二次方程的实数根,即命题③正确

④函数y=ex1(x<0),y′=ex∈(0,1),

函数y=x+1x,y′=11x2=x21x2=11x2,11x2∈(0,1),1x2∈(0,1),∴x>1,则m=1.

故要使得分段函数的图象具有“可平行性”,

且导函数单调递增,

的值域应该是

结合幂函数的性质和函数的平移性质可得导函数在上单调递增,且 据此可得m=1.

真命题个数为2个.

本题选择B选项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课程表上的相邻两节文化课之间最多间隔1节艺术课的概率为(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中, 已知定圆,动圆过点且与圆相切,记动圆圆心的轨迹为曲线.

(1)求曲线的方程;

(2)设是曲线上两点,点关于轴的对称点为 (异于点),若直线分别交轴于点,证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,台风中心从A地以每小时20千米的速度向东北方向(北偏东)移动,离台风中心不超过300千米的地区为危险区域.城市B在A地的正东400千米处.请建立恰当的平面直角坐标系,解决以下问题:

(1) 求台风移动路径所在的直线方程;

(2)求城市B处于危险区域的时间是多少小时?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小区一住户在楼顶违规私自建了“阳光房”,该小区其他居民对此意见很大,通过物业和城管部门多次上门协调,该住户终于拆除了“阳光房”,对此有人认为既然已经建成再拆除太可惜了,为此业主委员会通过随机询问小区100名性别不同的居民对此件事情的看法,得到如下的2×2列联表

认为应该拆除

认为太可惜了

总计

45

10

55

30

15

45

总计

75

25

100

附:

P(K2≥k)

0.10

0.05

0.025

k

2.706

3.841

5.024

K2= ,其中n=a+b+c+d
参照附表,由此可知下列选项正确的是(
A.在犯错误的概率不超过1%的前提下,认为“是否认为拆除太可惜了与性别有关”
B.在犯错误的概率不超过1%的前提下,认为“是否认为拆除太可惜了与性别无关”
C.有90%以上的把握认为“是否认为拆除太可惜了与性别有关”
D.有90%以上的把握认为“是否认为拆除太可惜了与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求的最大值;

(Ⅱ)若对恒成立,求的取值范围;

(Ⅲ)证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+ (ab≠0).
(1)当b=a=1时,求函数f(x)的单调区间;
(2)若函数f(x)在点(2,f(2))处的切线方程是y=2x﹣3,证明:曲线y=f(x)上任一点处的切线与直线x=1和直线y=x所围成的三角形面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= 是奇函数,则使f(x)>4成立的x的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校为了解学生的数学学习情况,在全校高一年级学生中进行了抽样调查,调查结果如表所示:

喜欢数学

不喜欢数学

合计

男生

60

20

80

女生

10

10

20

合计

70

30

100


(1)根据表中数据,问是否有95%的把握认为“男生和女生在喜欢数学方面有差异”;
(2)在被调查的女生中抽出5名,其中2名喜欢数学,现在从这5名学生中随机抽取3人,求至多有1人喜欢数学的概率.
附:参考公式:K2= ,其中n=a+b+c+d

P(K2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

同步练习册答案