精英家教网 > 高中数学 > 题目详情
14.若g(x)=1-2x,f(g(x))=$\frac{1-x^2}{x^2}$,则f($\frac{1}{2}$)的值为(  )
A.1B.15C.4D.30

分析 令g(x)=1-2x=$\frac{1}{2}$,可得x=$\frac{1}{4}$,即可求出f($\frac{1}{2}$).

解答 解:令g(x)=1-2x=$\frac{1}{2}$,可得x=$\frac{1}{4}$,
∴f($\frac{1}{2}$)=$\frac{1-\frac{1}{16}}{\frac{1}{16}}$=15.
故选:B.

点评 本题考查求函数值,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在平面直角坐标系xoy中,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e=$\frac{\sqrt{3}}{2}$,过椭圆由焦点F作两条互相垂直的弦AB与CD.当直线AB斜率为0时,弦AB长4.
(1)求椭圆的方程;
(2)若直线AB斜率为1时,求弦AB长;
(3)过椭圆的对称中心O,作直线L,交椭圆与M,N,三角形FMN是否存在在大面积?若存在,求出它的最大面积值.若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=log2x+$\frac{x}{3}$-3 的零点所在区间为(  )
A.(0,1)B.)(1,2 )C.( 2,3 )D.( 3,4 )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a>0,函数f(x)=ln(2-x)+ax.
(Ⅰ)设曲线y=f(x)在点(1,f(1))处的切线与y轴垂直,求a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)求函数f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a、b、c分别为△ABC三个内角A、B、C的对边,且bsinA=$\sqrt{3}$acosB.
(1)求B;
(2)若b=3,sinC=2sinA,求a,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,正方体ABCD-A1B1C1D1中,P、Q分别是AD1、BD上的点,且AP=BQ,求证:PQ∥平面DCC1D1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知λ∈R,函数$f(x)=\left\{{\begin{array}{l}{|{x+1}|,x<0}\\{lgx,x>0}\end{array}}\right.$g(x)=x2-4x+1+4λ,若关于x的方程f(g(x))=λ有6个解,则λ的取值范围为(  )
A.$(0,\frac{2}{3})$B.$(\frac{1}{2},\frac{2}{3})$C.$(\frac{2}{5},\frac{1}{2})$D.$(0,\frac{2}{5})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列双曲线中,渐近线方程为y=±2x的是(  )
A.${x}^{2}-\frac{{y}^{2}}{4}=1$B.$\frac{{x}^{2}}{4}$-y2=1C.x2-$\frac{{y}^{2}}{2}$=1D.$\frac{{x}^{2}}{2}$-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知正项数列{an}的前n项和为Sn,且Sn=$\frac{{{a_n}({a_n}+2)}}{4}$(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=100-3n•an,求数列{|bn|}的前n项和.

查看答案和解析>>

同步练习册答案