ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÁ½¸öÎÞÇîÊýÁÐ{an}¡¢{bn}Âú×ãanbn+1+an+1bn=2nan+1£¨n¡ÊN*£©£®
£¨¢ñ£©µ±ÊýÁÐ{an}Êdz£ÊýÁУ¨¸÷ÏÏàµÈµÄÊýÁУ©£¬ÇÒb1=
1
2
ʱ£¬ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨¢ò£©Éè{an}¡¢{bn}¶¼Êǹ«²î²»Îª0µÄµÈ²îÊýÁУ¬ÇóÖ¤£ºÊýÁÐ{an}ÓÐÎÞÇî¶à¸ö£¬¶øÊýÁÐ{bn}Ωһȷ¶¨£»
£¨¢ó£©Éèan+1=
2an2+an
an+1
(n¡ÊN*)
£¬Sn=
2n
i=1
bi
£¬ÇóÖ¤£º2£¼
Sn
n2
£¼6£®
·ÖÎö£º£¨I£©Éèan=a£¾0£¬ÀûÓÃÊýÁÐ{an}¡¢{bn}Âú×ãanbn+1+an+1bn=2nan+1£¨n¡ÊN*£©£¬¿ÉµÃbn+1+bn=2n£¬£¨n¡ÊN*£©£¬ÓÚÊǵ±n¡Ý2ʱ£¬bn+bn-1=2£¨n-1£©£®ÓÚÊÇbn+1-bn-1=2£®¿ÉÖª£ºÊýÁÐ{bn}µ±nΪÆæÊý»òżÊýʱ°´Ô­Ë³Ðò¾ù¹¹³ÉÒÔ2Ϊ¹«²îµÄµÈ²îÊýÁУ¬ÀûÓõȲîÊýÁеÄͨÏʽ¼´¿ÉµÃ³ö£»
£¨II£©Éè{an}¡¢{bn}¹«²î·Ö±ðΪd1¡¢d2£¬¿ÉµÃÆäͨÏʽ£¬´úÈëanbn+1+an+1bn=2nan+1£¨n¡ÊN*£©£®¿ÉµÃ[a1+£¨n-1£©d1][b1+nd2]+£¨a1+nd1£©[b1+£¨n-1£©d2]=2n£¨a1+nd1£©£¬¶ÔÓÚÈÎÒânºã³ÉÁ¢£¬¿ÉµÃ
2d1d2=2d1
2b1d1+2a1d2-2a1d2=2a1
2a1b1-b1d1-a1d2=0
£¬½â³ö¼´¿É£»
£¨III£©ÀûÓÃan+1=
2
a
2
n
+an
an+1
£¬¿ÉµÃan+1-an=
2
a
2
n
+an
an+1
-an=
a
2
n
an+1
£¾0
£¬ÓÚÊÇan£¼an+1£®ÀûÓÃanbn+1+an+1bn=2nan+1£¼an+1bn+1+an+1bn£¬¿ÉµÃ2n£¼bn+1+bn£®ÓÖanbn+1=£¨2n-bn£©•an+1£¾0£¬an+1£¾0£¬¿ÉµÃ2n-bn£¾0£®¿ÉµÃSn¡Ê(2n2£¬4n2+2n)£¬½ø¶øµÃ³ö£®
½â´ð£º£¨I£©½â£ºÉèan=a£¾0£¬¡ßÊýÁÐ{an}¡¢{bn}Âú×ãanbn+1+an+1bn=2nan+1£¨n¡ÊN*£©£¬
¡àbn+1+bn=2n£¬£¨n¡ÊN*£©£¬ÓÚÊǵ±n¡Ý2ʱ£¬bn+bn-1=2£¨n-1£©£®
¡àbn+1-bn-1=2£®
¡à¿ÉÖª£ºÊýÁÐ{bn}µ±nΪÆæÊý»òżÊýʱ°´Ô­Ë³Ðò¾ù¹¹³ÉÒÔ2Ϊ¹«²îµÄµÈ²îÊýÁУ¬
ÓÖb1=
1
2
£¬b1+b2=2£¬¿ÉµÃb2=
3
2
£®
¡àb2n-1=
1
2
+(n-1)•2
=(2n-1)-
1
2
£¬b2n=
3
2
+(n-1)•2
=2n-
1
2
£¬
¼´bn=n-
1
2
£¨n¡ÊN*£©£®
£¨2£©Ö¤Ã÷£ºÉè{an}¡¢{bn}¹«²î·Ö±ðΪd1¡¢d2£¬
Ôòan=a1+£¨n-1£©d£¬bn=b1+£¨n-1£©d2£¬
´úÈëanbn+1+an+1bn=2nan+1£¨n¡ÊN*£©£®
¿ÉµÃ[a1+£¨n-1£©d1][b1+nd2]+£¨a1+nd1£©[b1+£¨n-1£©d2]=2n£¨a1+nd1£©£¬¶ÔÓÚÈÎÒânºã³ÉÁ¢£¬
¿ÉµÃ
2d1d2=2d1
2b1d1+2a1d2-2a1d2=2a1
2a1b1-b1d1-a1d2=0
£¬½âµÃ
d1=a1
b1=1
d2=1
£¬
¿ÉµÃan=na1£¬bn=n£®
¡àÖ»ÓÐÈ¡a1£¾0¿ÉµÃÊýÁÐ{an}ÓÐÎÞÇî¶à¸ö£¬¶øÊýÁÐ{bn}Ωһȷ¶¨£»
£¨3£©Ö¤Ã÷£º¡ßan+1=
2
a
2
n
+an
an+1
£¬
¡àan+1-an=
2
a
2
n
+an
an+1
-an=
a
2
n
an+1
£¾0
£¬
¡àan£¼an+1£®
¡àanbn+1+an+1bn=2nan+1£¼an+1bn+1+an+1bn£¬¿ÉµÃ2n£¼bn+1+bn£®
Òò´ËSn=
2n
i=1
bi
=£¨b1+b2£©+£¨b3+b4£©+¡­+£¨b2n-1+b2n£©£¾2[1+3+¡­+£¨2n-1£©]=2n2£®
ÓÖanbn+1=£¨2n-bn£©•an+1£¾0£¬an+1£¾0£¬
¡à2n-bn£¾0£®
¡àSn=
2n
i=1
bi£¼2(1+2+¡­+2n)
=2n£¨1+2n£©=4n2+2n£¬
¡àSn¡Ê(2n2£¬4n2+2n)£¬
¡à2£¼
Sn
n2
£¼4+
2
n
¡Ü6
£®
µãÆÀ£ºÊìÁ·ÕÆÎյȲîÊýÁеÄͨÏʽ¼°ÆäÇ°nÏîºÍ¹«Ê½¡¢ÊýÁеĵ¥µ÷ÐÔ¡¢·ÅËõ·¨µÈÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÁ½¸öÊýÁÐ{an}£¬{bn}£¬ÓÉϱí¸ø³ö£º
n 1 2 3 4 5
an 1 5 3 1 2
bn 1 6 2 x y
¶¨ÒåÊýÁÐ{cn}£ºc1=0£¬cn=
bn£¬cn-1£¾an
cn-1-an+bn£¬cn-1¡Üan
(n=2£¬3£¬4£¬5)
£¬²¢¹æ¶¨ÊýÁÐ{an}£¬{bn}µÄ¡°²¢ºÍ¡±ÎªSab=a1+a2+¡­+a5+c5£¬ÈôSab=15£¬ÔòyµÄ×îСֵΪ
3
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÁ½¸öÊýÁÐ{an}ºÍ{bn}Âú×㣺an+1=
anbn
an2+bn2
£¬n¡ÊN*£®
£¨1£©ÇóÖ¤£ºµ±n¡Ý2ʱ£¬ÓÐan¡Ü
2
2
³ÉÁ¢£»
£¨2£©Éèbn+1=
bn
an
£¬n¡ÊN*£¬ÇóÖ¤£ºÊýÁÐ{(
bn
an
)
2
}
ÊǵȲîÊýÁУ»
£¨3£©Éèbn+1=anbn£¬n¡ÊN*£¬ÊÔÎÊ{an}¿ÉÄÜΪµÈ±ÈÊýÁÐÂð£¿Èô¿ÉÄÜ£¬ÇëÇó³ö¹«±ÈµÄÖµ£¬Èô²»¿ÉÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÁ½¸öÊýÁÐ{an}ºÍ{bn}Âú×㣺an+1=
an+bn
a
2
n
+b
2
n
£¬n¡ÊN©~£¬
£¨¢ñ£©Éèbn+1=1+
bn
an
£¬n¡ÊN©~£¬ÇóÖ¤£º
£¨1£©
bn+1
an+1
=
1+(
bn
an
)
2
£»
£¨2£©ÊýÁÐ{(
bn
an
)
2
}ÊǵȲîÊýÁУ¬²¢Çó³öÆ乫²î£»
£¨¢ò£©Éèbn+1=
2
bn
an
£¬n¡ÊN©~£¬ÇÒ{an}ÊǵȱÈÊýÁУ¬Çóa1ºÍb1µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•½­ËÕ£©ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÁ½¸öÊýÁÐ{an}ºÍ{bn}Âú×㣺an+1=
an+bn
an2+bn2
£¬n¡ÊN*£¬
£¨1£©Éèbn+1=1+
bn
an
£¬n¡ÊN*£¬£¬ÇóÖ¤£ºÊýÁÐ{(
bn
an
) 2}
ÊǵȲîÊýÁУ»
£¨2£©Éèbn+1=
2
bn
an
£¬n¡ÊN*£¬ÇÒ{an}ÊǵȱÈÊýÁУ¬Çóa1ºÍb1µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÁ½¸öÊýÁÐÓɱíϸø³ö£º
¶¨ÒåÊýÁÐ{cn}£ºc1=0£¬cn=
bn£¬cn-1£¾an
cn-1-an+bn£¬cn-1¡Üan
(n=2£¬3£¬¡­£¬5)
£¬²¢¹æ¶¨ÊýÁÐ
n 1 2 3 4 5
an 1 5 3 1 2
bn 1 6 2 x y
{ an}£¬{ bn}µÄ¡°²¢ºÍ¡±Îª Sab=a1+a2+¡­+a5+c5£®Èô Sab=15£¬
ÔòyµÄ×îСֵΪ
3
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸