精英家教网 > 高中数学 > 题目详情
本题有(1)、(2)、(3)三个选考题,请考生任选2题作答,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换曲线x2+4xy+2y2=1在二阶矩阵的作用下变换为曲线x2-2y2=1,求M的逆矩阵M-1=   
(2)选修4-4:坐标系与参数方程在曲线C1(θ为参数),在曲线C1求一点,使它到直线C2(t为参数)的距离最小,最小距离   
(3)选修4-5:不等式选讲设函数f(x)=.试求a的取值范围   
【答案】分析:(1)由detM==1,能求出M-1
(2)将直线的参数方程化为普通方程,曲线C1任意点P的坐标为(1+cosθ,sinθ),利用点到直线的距离公式P到直线的距离d,分子合并后利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,与分母约分化简后,根据正弦函数的值域可得正弦函数的最小值,进而得到距离d的最小值,并求出此时θ的度数,即可确定出所求点P的坐标.
(3)由f(x)=,知|x+1|+|x-2|+a≥0,由此能求出a的取值范围.
解答:解:(1)∵detM==1,
∴M-1==
故答案为:
(2)将直线C2化为普通方程得:x+y-1+2=0,
设所求的点为P(1+cosθ,sinθ),
则P到直线C2的距离d=
=|sin(θ+)+2|,
当θ+=,即θ=时,sin(θ+)=-1,d取得最小值1,
此时点P的坐标为(1-,-).
故答案为:1.
(3)∵f(x)=
∴|x+1|+|x-2|+a≥0,
∵|x+1|+|x-2|≥3,
∴a≥-3.
故答案为:{a|a≥-3}.
点评:第(1)题考查矩阵与变换的应用,第(2)题考查坐标系与参数方程的应用,第(3)题考查不等式的应用,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,请考生任选2题作答.
(1)选修4-2:矩阵与变换
已知a,b∈R,若M=
-1a
b3
所对应的变换TM把直线L:2x-y=3变换为自身,求实数a,b,并求M的逆矩阵.
(2)选修4-4:坐标系与参数方程
已知直线l的参数方程:
x=t
y=1+2t
(t为参数)和圆C的极坐标方程:ρ=2
2
sin(θ+
π
4
)

①将直线l的参数方程化为普通方程,圆C的极坐标方程化为直角坐标方程;
②判断直线l和圆C的位置关系.
(3)选修4-5:不等式选讲
已知函数f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求实数x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选择题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1).选修4-2:矩阵与变换
已知矩阵A=
1a
-1b
,A的一个特征值λ=2,其对应的特征向量是α1=
2
1

(Ⅰ)求矩阵A;
(Ⅱ)若向量β=
7
4
,计算A2β的值.

(2).选修4-4:坐标系与参数方程
已知椭圆C的极坐标方程为ρ2=
12
3cos2θ+4sin2θ
,点F1,F2为其左、右焦点,直线l的参数方程为
x=2+
2
2
t
y=
2
2
t
(t为参数,t∈R).求点F1,F2到直线l的距离之和.
(3).选修4-5:不等式选讲
已知x,y,z均为正数.求证:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知矩阵A=
12
34

①求矩阵A的逆矩阵B;
②若直线l经过矩阵B变换后的方程为y=x,求直线l的方程.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为
x=1+2cosα
y=-1+2sinα
(a为参数),点Q极坐标为(2,
7
4
π).
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
(I)关于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范围.
(II)设x,y,z∈R,且
x2
16
+
y2
5
+
z2
4
=1
,求x+y+z的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(Ⅰ)选修4-2:矩阵与变换,
已知矩阵A=
01
a0
,矩阵B=
02
b0
,直线l1
:x-y+4=0经矩阵A所对应的变换得直线l2,直线l2又经矩阵B所对应的变换得到直线l3:x+y+4=0,求直线l2的方程.
(Ⅱ)选修4-4:坐标系与参数方程,
求直线
x=-2+2t
y=-2t
被曲线
x=1+4cosθ
y=-1+4sinθ
截得的弦长.
(Ⅲ)选修4-5:不等式选讲,解不等式|x+1|+|2x-4|>6.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分
(1)已知矩阵M=
12
21
,β=
1
7
,(Ⅰ)求M-1;(Ⅱ)求矩阵M的特征值和对应的特征向量;(Ⅲ)计算M100β.
(2)曲线C的极坐标方程是ρ=1+cosθ,点A的极坐标是(2,0),求曲线C在它所在的平面内绕点A旋转一周而形成的图形的周长.
(3)已知a>0,求证:
a2+
1
a2
-
2
≥a+
1
a
-2

查看答案和解析>>

同步练习册答案