精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知曲线的参数方程为 (为参数,).

(1)当时,若曲线上存在两点关于点成中心对称,求直线的斜率;

(2)在以原点为极点,轴正半轴为极轴的极坐标系中,极坐标方程为的直线与曲线相交于两点,若,求实数的值.

【答案】(1);(2).

【解析】分析:(1)将参数方程消去参数得到曲线的普通方程为,由曲线上存在两点关于点成中心对称可得,求得,于是得.(2)将曲线C的参数方程消去参数可得,根据圆的弦长公式可得,即为所求.

详解:(1)当时,曲线的参数方程为(为参数),

消去参数得

∴圆心的坐标为

∵曲线上存在两点关于点成中心对称,

∴直线的斜率

(2)由 (为参数,)消去参数得曲线的普通方程为

∴圆心的坐标为,半径为

又直线的极坐标方程可化为

故其直角坐标方程为

解得

∴实数的值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数 ,且的极值点.

(Ⅰ) 的极大值点,求的单调区间(用表示);

(Ⅱ)恰有1解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省数学学业水平考试成绩共分为四个等级,在学业水平考试成绩分布后,从该省某地区考生中随机抽取名考生,统计他们的数学成绩,部分数据如下:

等级

频数

频率

(1)补充完成上述表格的数据;

(2)现按上述四个等级,用分层抽样方法从这名考生中抽取名.在这名考生中,从成绩为等和等的所有考生中随机抽取名,求至少有名成绩为等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的参数方程为 (θ为参数),直线l的极坐标方程为ρcos=2.

(1)写出曲线C的普通方程和直线l的直角坐标方程;

(2)求曲线C上的点到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数).

(1)求的直角坐标方程;

(2)若曲线截直线所得线段的中点坐标为,求的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)当时,解不等式

2)若关于的方程的解集中恰有一个元素,求的值;

3)设,若内是减函数,对任意,函数在区间上的最大值与最小值的差不超过,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在测试中,客观题难题的计算公式为,其中为第题的难度,为答对该题的人数,为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:

题号

1

2

3

4

5

考前预估难度

0.9

0.8

0.7

0.6

0.4

测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):

学生 编号

题号

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

(1)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;

题号

1

2

3

4

5

实测答对人数

实测难度

(2)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率;

(3)定义统计量,其中为第题的实测难度,为第题的预估难度().规定:若,则称该次测试的难度估合理,否则为不合理.判断本次测试的难度预估是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某市2015年全年空气质量等级如表1所示.

1

空气质量等级(空气质量指数(AQI))

频数

频率

优(

83

22.8%

良(

121

33.2%

轻度污染(

68

18.6%

中度污染(

49

13.4%

重度污染(

30

8.2%

严重污染(

14

3.8%

合计

365

100%

20165月和6月的空气质量指数如下:

5 240 80 56 53 92 126 45 87 56 60

191 62 55 58 56 53 89 90 125 124

103 81 89 44 34 53 79 81 62 116

88

6 63 92 110 122 102 116 81 163 158 76

33 102 65 53 38 55 52 76 99 127

120 80 108 33 35 73 82 90 146 95

选择合适的统计图描述数据,并回答下列问题:

1)分析该市20166月的空气质量情况.

2)比较该市20165月和6月的空气质量,哪个月的空气质量较好?

3)比较该市20166月与该市2015年全年的空气质量,20166月的空气质量是否好于去年?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中,,以为折痕把折起,使点到达点的位置.

(1)若,求三棱锥体积的最大值;

(2)若,证明:平面平面

查看答案和解析>>

同步练习册答案